Analysis of the Brunel model and resulting hot electron spectra

被引:19
作者
Mulser, P. [1 ]
Weng, S. M. [1 ]
Liseykina, Tatyana [2 ]
机构
[1] Tech Univ Darmstadt, D-64289 Darmstadt, Germany
[2] Univ Rostock, Inst Phys, D-18051 Rostock, Germany
关键词
SHORT LASER-PULSE; ABSORPTION; GENERATION; CONVERSION;
D O I
10.1063/1.3696034
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Among the various attempts to model collisionless absorption of intense and superintense ultrashort laser pulses, the so-called Brunel mechanism plays an eminent role. A detailed analysis reveals essential aspects of collisionless absorption: Splitting of the electron energy spectrum into two groups under p-polarization, prompt generation of fast electrons during one laser cycle or a fraction of it, insensitivity of absorption with respect to target density well above n(c), robustness, simplicity, and logical coherence. Such positive aspects contrast with a non-Maxwellian tail of the hot electrons, too low energy cut off, excessively high fraction of fast electrons, and inefficient absorption at moderate angles of single beam incidence and intensities. Brunel's pioneering idea has been the recognition of the role of the space charges induced by the electron motion perpendicular to the target surface that make irreversibility possible. By setting the electrostatic fields inside the overdense target equal to zero, anharmonic resonance and mixing of layers leading to Maxwellianization are excluded. To what extent the real electron spectra and their scaling on laser intensity are the product of the interplay between Brunel's mechanism and anharmonic resonance is still an open question. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3696034]
引用
收藏
页数:8
相关论文
共 32 条
[11]   Absorption of intense high-contrast sub-picosecond laser pulses in solid targets [J].
Eidmann, K ;
Rix, R ;
Schlegel, T ;
Witte, K .
EUROPHYSICS LETTERS, 2001, 55 (03) :334-340
[12]   COLLISIONLESS ABSORPTION IN SHARP-EDGED PLASMAS [J].
GIBBON, P ;
BELL, AR .
PHYSICAL REVIEW LETTERS, 1992, 68 (10) :1535-1538
[13]   Hot-Electron Temperature and Laser-Light Absorption in Fast Ignition [J].
Haines, M. G. ;
Wei, M. S. ;
Beg, F. N. ;
Stephens, R. B. .
PHYSICAL REVIEW LETTERS, 2009, 102 (04)
[14]   Microscopic analysis of large-cluster explosion in intense laser fields [J].
Jungreuthmayer, C ;
Geissler, M ;
Zanghellini, J ;
Brabec, T .
PHYSICAL REVIEW LETTERS, 2004, 92 (13) :133401-1
[15]   Near-complete absorption of intense, ultrashort laser light by sub-λ gratings [J].
Kahaly, Subhendu ;
Yadav, S. K. ;
Wang, W. M. ;
Sengupta, S. ;
Sheng, Z. M. ;
Das, A. ;
Kaw, P. K. ;
Kumar, G. Ravindra .
PHYSICAL REVIEW LETTERS, 2008, 101 (14)
[16]   Electron Temperature Scaling in Laser Interaction with Solids [J].
Kluge, T. ;
Cowan, T. ;
Debus, A. ;
Schramm, U. ;
Zeil, K. ;
Bussmann, M. .
PHYSICAL REVIEW LETTERS, 2011, 107 (20)
[17]   Collisionless heating of a nanoplasma in laser-irradiated clusters [J].
Korneev, PA ;
Popruzhenko, SV ;
Zaretsky, DF ;
Becker, W .
LASER PHYSICS LETTERS, 2005, 2 (09) :452-458
[18]   JXB HEATING BY VERY INTENSE LASER-LIGHT [J].
KRUER, WL ;
ESTABROOK, K .
PHYSICS OF FLUIDS, 1985, 28 (01) :430-432
[19]   LINEAR-MODE CONVERSION IN LASER PLASMAS [J].
KULL, HJ .
PHYSICS OF FLUIDS, 1983, 26 (07) :1881-1887
[20]   Two-surface wave decay [J].
Macchi, A ;
Cornolti, F ;
Pegoraro, F .
PHYSICS OF PLASMAS, 2002, 9 (05) :1704-1711