Analysis of the Brunel model and resulting hot electron spectra

被引:19
作者
Mulser, P. [1 ]
Weng, S. M. [1 ]
Liseykina, Tatyana [2 ]
机构
[1] Tech Univ Darmstadt, D-64289 Darmstadt, Germany
[2] Univ Rostock, Inst Phys, D-18051 Rostock, Germany
关键词
SHORT LASER-PULSE; ABSORPTION; GENERATION; CONVERSION;
D O I
10.1063/1.3696034
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Among the various attempts to model collisionless absorption of intense and superintense ultrashort laser pulses, the so-called Brunel mechanism plays an eminent role. A detailed analysis reveals essential aspects of collisionless absorption: Splitting of the electron energy spectrum into two groups under p-polarization, prompt generation of fast electrons during one laser cycle or a fraction of it, insensitivity of absorption with respect to target density well above n(c), robustness, simplicity, and logical coherence. Such positive aspects contrast with a non-Maxwellian tail of the hot electrons, too low energy cut off, excessively high fraction of fast electrons, and inefficient absorption at moderate angles of single beam incidence and intensities. Brunel's pioneering idea has been the recognition of the role of the space charges induced by the electron motion perpendicular to the target surface that make irreversibility possible. By setting the electrostatic fields inside the overdense target equal to zero, anharmonic resonance and mixing of layers leading to Maxwellianization are excluded. To what extent the real electron spectra and their scaling on laser intensity are the product of the interplay between Brunel's mechanism and anharmonic resonance is still an open question. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3696034]
引用
收藏
页数:8
相关论文
共 32 条
[1]   The zero vector potential mechanism of attosecond absorption [J].
Baeva, T. ;
Gordienko, S. ;
Robinson, A. P. L. ;
Norreys, P. A. .
PHYSICS OF PLASMAS, 2011, 18 (05)
[2]   Vacuum heating versus skin layer absorption of intense femtosecond laser pulses [J].
Bauer, D. ;
Mulser, P. .
PHYSICS OF PLASMAS, 2007, 14 (02)
[3]  
Beg FN, 1997, PHYS PLASMAS, V4, P447, DOI 10.1063/1.872103
[4]   NOT-SO-RESONANT, RESONANT ABSORPTION [J].
BRUNEL, F .
PHYSICAL REVIEW LETTERS, 1987, 59 (01) :52-55
[5]   Proton acceleration with high-intensity ultrahigh-contrast laser pulses [J].
Ceccotti, T. ;
Levy, A. ;
Popescu, H. ;
Reau, F. ;
D'Oliveira, P. ;
Monot, P. ;
Geindre, J. P. ;
Lefebvre, E. ;
Martin, Ph. .
PHYSICAL REVIEW LETTERS, 2007, 99 (18)
[6]   Absorption of ultrashort laser pulses in strongly overdense targets [J].
Cerchez, M. ;
Jung, R. ;
Osterholz, J. ;
Toncian, T. ;
Willi, O. ;
Mulser, P. ;
Ruhl, H. .
PHYSICAL REVIEW LETTERS, 2008, 100 (24)
[7]   A Bremsstrahlung spectrometer using k-edge and differential filters with image plate dosimeters [J].
Chen, C. D. ;
King, J. A. ;
Key, M. H. ;
Akli, K. U. ;
Beg, F. N. ;
Chen, H. ;
Freeman, R. R. ;
Link, A. ;
Mackinnon, A. J. ;
MacPhee, A. G. ;
Patel, P. K. ;
Porkolab, M. ;
Stephens, R. B. ;
Van Woerkom, L. D. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (10)
[8]   Hot electron generation via vacuum heating process in femtosecond laser-solid interactions [J].
Chen, LM ;
Zhang, J ;
Dong, QL ;
Teng, H ;
Liang, TJ ;
Zhao, LZ ;
Wei, ZY .
PHYSICS OF PLASMAS, 2001, 8 (06) :2925-2929
[9]   Laser absorption by overdense plasmas in the relativistic regime [J].
Davies, J. R. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (01)
[10]   Hydrodynamic simulation of subpicosecond laser interaction with solid-density matter [J].
Eidmann, K ;
Meyer-ter-Vehn, J ;
Schlegel, T ;
Hüller, S .
PHYSICAL REVIEW E, 2000, 62 (01) :1202-1214