Magnetic Vortices as Efficient Nano Heaters in Magnetic Nanoparticle Hyperthermia

被引:70
作者
Usov, N. A. [1 ,2 ,3 ]
Nesmeyanov, M. S. [3 ]
Tarasov, V. P. [1 ]
机构
[1] Natl Univ Sci & Technol MISiS, Moscow 119049, Russia
[2] Russian Acad Sci, Pushkov Inst Terr Magnetism Ionosphere & Radio Wa, IZMIRAN, Moscow 142190, Russia
[3] Natl Res Nucl Univ MEPhI, Moscow 115409, Russia
关键词
IRON-OXIDE NANOCUBES; MICROMAGNETIC STRUCTURES; HIGH VALUES; IN-VIVO; ABSORPTION; AGGREGATION; PARTICLES;
D O I
10.1038/s41598-017-18162-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Magnetic vortices existing in soft magnetic nanoparticles with sizes larger than the single-domain diameter can be efficient nano-heaters in biomedical applications. Using micromagnetic numerical simulation we prove that in the optimal range of particle diameters the magnetization reversal of the vortices in spherical iron and magnetite nanoparticles is possible for moderate amplitudes of external alternating magnetic field, H-0 < 100 Oe. In contrast to the case of superparamagnetic nanoparticles, for the vortex configuration the hysteresis loop area increases as a function of frequency. Therefore, high values of the specific absorption rate, on the order of 1000 W/g, can be obtained at frequencies f = 0.5-1.0 MHz. Because the diameter D of a non single-domain particle is several times larger than the diameter d of a superparamagnetic particle, the volume of heat generation for the vortex turns out to be (D/d)(3) times larger. This shows the advantage of vortex configurations for heat generation in alternating magnetic field in biomedical applications.
引用
收藏
页数:9
相关论文
共 53 条
[1]   High performance multi-core iron oxide nanoparticles for magnetic hyperthermia: microwave synthesis, and the role of core-to-core interactions [J].
Blanco-Andujar, C. ;
Ortega, D. ;
Southern, P. ;
Pankhurst, Q. A. ;
Thanh, N. T. K. .
NANOSCALE, 2015, 7 (05) :1768-1775
[2]   Effect of magnetic dipolar interactions on nanoparticle heating efficiency: Implications for cancer hyperthermia [J].
Branquinho, Luis C. ;
Carriao, Marcus S. ;
Costa, Anderson S. ;
Zufelato, Nicholas ;
Sousa, Marcelo H. ;
Miotto, Ronei ;
Ivkov, Robert ;
Bakuzis, Andris F. .
SCIENTIFIC REPORTS, 2013, 3
[3]  
Brezovich I.A., 1988, Medical physics monograph, V16, P82
[4]  
Brown W. F., 1963, Micromagnetics
[5]   Magnetically triggered release of molecular cargo from iron oxide nanoparticle loaded microcapsules [J].
Carregal-Romero, Susana ;
Guardia, Pablo ;
Yu, Xiang ;
Hartmann, Raimo ;
Pellegrino, Teresa ;
Parak, Wolfgang J. .
NANOSCALE, 2015, 7 (02) :570-576
[6]  
Chikazumi S., 1964, Physics of magnetism
[7]   A Single Picture Explains Diversity of Hyperthermia Response of Magnetic Nanoparticles [J].
Conde-Leboran, Ivan ;
Baldomir, Daniel ;
Martinez-Boubeta, Carlos ;
Chubykalo-Fesenko, Oksana ;
Morales, Maria del Puerto ;
Salas, Gorka ;
Cabrera, David ;
Camarero, Julio ;
Teran, Francisco J. ;
Serantes, David .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (27) :15698-15706
[8]   Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs [J].
Di Corato, Riccardo ;
Espinosa, Ana ;
Lartigue, Lenaic ;
Tharaud, Mickael ;
Chat, Sophie ;
Pellegrino, Teresa ;
Menager, Christine ;
Gazeau, Florence ;
Wilhelm, Claire .
BIOMATERIALS, 2014, 35 (24) :6400-6411
[9]   Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy [J].
Dutz, Silvio ;
Hergt, Rudolf .
INTERNATIONAL JOURNAL OF HYPERTHERMIA, 2013, 29 (08) :790-800
[10]   Magnetic multicore nanoparticles for hyperthermia-influence of particle immobilization in tumour tissue on magnetic properties [J].
Dutz, Silvio ;
Kettering, Melanie ;
Hilger, Ingrid ;
Mueller, Robert ;
Zeisberger, Matthias .
NANOTECHNOLOGY, 2011, 22 (26)