Magnetic Vortices as Efficient Nano Heaters in Magnetic Nanoparticle Hyperthermia

被引:67
作者
Usov, N. A. [1 ,2 ,3 ]
Nesmeyanov, M. S. [3 ]
Tarasov, V. P. [1 ]
机构
[1] Natl Univ Sci & Technol MISiS, Moscow 119049, Russia
[2] Russian Acad Sci, Pushkov Inst Terr Magnetism Ionosphere & Radio Wa, IZMIRAN, Moscow 142190, Russia
[3] Natl Res Nucl Univ MEPhI, Moscow 115409, Russia
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
关键词
IRON-OXIDE NANOCUBES; MICROMAGNETIC STRUCTURES; HIGH VALUES; IN-VIVO; ABSORPTION; AGGREGATION; PARTICLES;
D O I
10.1038/s41598-017-18162-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Magnetic vortices existing in soft magnetic nanoparticles with sizes larger than the single-domain diameter can be efficient nano-heaters in biomedical applications. Using micromagnetic numerical simulation we prove that in the optimal range of particle diameters the magnetization reversal of the vortices in spherical iron and magnetite nanoparticles is possible for moderate amplitudes of external alternating magnetic field, H-0 < 100 Oe. In contrast to the case of superparamagnetic nanoparticles, for the vortex configuration the hysteresis loop area increases as a function of frequency. Therefore, high values of the specific absorption rate, on the order of 1000 W/g, can be obtained at frequencies f = 0.5-1.0 MHz. Because the diameter D of a non single-domain particle is several times larger than the diameter d of a superparamagnetic particle, the volume of heat generation for the vortex turns out to be (D/d)(3) times larger. This shows the advantage of vortex configurations for heat generation in alternating magnetic field in biomedical applications.
引用
收藏
页数:9
相关论文
共 53 条
  • [1] High performance multi-core iron oxide nanoparticles for magnetic hyperthermia: microwave synthesis, and the role of core-to-core interactions
    Blanco-Andujar, C.
    Ortega, D.
    Southern, P.
    Pankhurst, Q. A.
    Thanh, N. T. K.
    [J]. NANOSCALE, 2015, 7 (05) : 1768 - 1775
  • [2] Effect of magnetic dipolar interactions on nanoparticle heating efficiency: Implications for cancer hyperthermia
    Branquinho, Luis C.
    Carriao, Marcus S.
    Costa, Anderson S.
    Zufelato, Nicholas
    Sousa, Marcelo H.
    Miotto, Ronei
    Ivkov, Robert
    Bakuzis, Andris F.
    [J]. SCIENTIFIC REPORTS, 2013, 3
  • [3] Brezovich I.A., 1988, Medical physics monograph, V16, P82
  • [4] Brown W. F., 1963, Micromagnetics
  • [5] Magnetically triggered release of molecular cargo from iron oxide nanoparticle loaded microcapsules
    Carregal-Romero, Susana
    Guardia, Pablo
    Yu, Xiang
    Hartmann, Raimo
    Pellegrino, Teresa
    Parak, Wolfgang J.
    [J]. NANOSCALE, 2015, 7 (02) : 570 - 576
  • [6] Chikazumi S., 1964, Physics of magnetism
  • [7] A Single Picture Explains Diversity of Hyperthermia Response of Magnetic Nanoparticles
    Conde-Leboran, Ivan
    Baldomir, Daniel
    Martinez-Boubeta, Carlos
    Chubykalo-Fesenko, Oksana
    Morales, Maria del Puerto
    Salas, Gorka
    Cabrera, David
    Camarero, Julio
    Teran, Francisco J.
    Serantes, David
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (27) : 15698 - 15706
  • [8] Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs
    Di Corato, Riccardo
    Espinosa, Ana
    Lartigue, Lenaic
    Tharaud, Mickael
    Chat, Sophie
    Pellegrino, Teresa
    Menager, Christine
    Gazeau, Florence
    Wilhelm, Claire
    [J]. BIOMATERIALS, 2014, 35 (24) : 6400 - 6411
  • [9] Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy
    Dutz, Silvio
    Hergt, Rudolf
    [J]. INTERNATIONAL JOURNAL OF HYPERTHERMIA, 2013, 29 (08) : 790 - 800
  • [10] Magnetic multicore nanoparticles for hyperthermia-influence of particle immobilization in tumour tissue on magnetic properties
    Dutz, Silvio
    Kettering, Melanie
    Hilger, Ingrid
    Mueller, Robert
    Zeisberger, Matthias
    [J]. NANOTECHNOLOGY, 2011, 22 (26)