Memristive properties of hexagonal WO3 nanowires induced by oxygen vacancy migration

被引:39
作者
He, Xiongwu [1 ]
Yin, Yanling [1 ]
Guo, Jie [1 ]
Yuan, Huajun [1 ]
Peng, Yuehua [1 ]
Zhou, Yong [1 ]
Zhao, Ding [1 ]
Hai, Kuo [1 ]
Zhou, Weichang [1 ]
Tang, Dongsheng [1 ]
机构
[1] Hunan Normal Univ, Coll Phys & Informat Sci, Key Lab Low Dimens Quantum Struct & Quantum Contr, Minist Educ, Changsha 410081, Hunan, Peoples R China
来源
NANOSCALE RESEARCH LETTERS | 2013年 / 8卷
基金
中国国家自然科学基金;
关键词
Electrical transport; Memristive properties; WO3; nanowires; Oxygen vacancies; WATER-MOLECULES;
D O I
10.1186/1556-276X-8-50
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Tungsten trioxide (WO3) is always oxygen-deficient or non-stoichiometric under atmospheric conditions. Positively charged oxygen vacancies prefer to drift as well as electrons when the electric field is strong enough, which will alter the distribution of oxygen vacancies and then endow WO3 with memristive properties. In Au/WO3 nanowire/Au sandwich structures with two ohmic contacts, the axial distribution of oxygen vacancies and then the electrical transport properties can be more easily modulated by bias voltage. The threshold electric field for oxygen vacancy drifting in single-crystal hexagonal WO3 nanowire is about 10(6) V/m, one order of magnitude less than that in its granular film. At elevated temperatures, the oxygen vacancy drifts and then the memristive effect can be enhanced remarkably. When the two metallic contacts are asymmetric, the WO3 nanowire devices even demonstrate good rectifying characteristic at elevated temperatures. Based on the drift of oxygen vacancies, nanoelectronic devices such as memristor, rectifier, and two-terminal resistive random access memory can be fabricated on individual WO3 nanowires.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 29 条
[1]  
Berak J.M., 1970, J SOLID STATE CHEM, V2, P109, DOI [DOI 10.1016/0022-4596(70)90040-X, 10.1016/0022-4596, DOI 10.1016/0022-4596]
[2]   Erasing characteristics of Cu2O metal-insulator-metal resistive switching memory [J].
Chen, A. ;
Haddad, S. ;
Wu, Y. C. ;
Fang, T. N. ;
Kaza, S. ;
Lan, Z. .
APPLIED PHYSICS LETTERS, 2008, 92 (01)
[3]   Gasochromic effect and relative mechanism of WO3 nanowire films [J].
Chen, Huanjun ;
Xu, Ningsheng ;
Deng, Shaozhi ;
Lu, Dongyu ;
Li, Zhenglin ;
Zhou, Jun ;
Chen, Jun .
NANOTECHNOLOGY, 2007, 18 (20)
[4]  
Chien W. C., 2010, 2010 IEEE International Electron Devices Meeting (IEDM 2010), DOI 10.1109/IEDM.2010.5703390
[5]   A [2]catenane-based solid state electronically reconfigurable switch [J].
Collier, CP ;
Mattersteig, G ;
Wong, EW ;
Luo, Y ;
Beverly, K ;
Sampaio, J ;
Raymo, FM ;
Stoddart, JF ;
Heath, JR .
SCIENCE, 2000, 289 (5482) :1172-1175
[6]   Density-functional studies of tungsten trioxide, tungsten bronzes, and related systems [J].
Ingham, B ;
Hendy, SC ;
Chong, SV ;
Tallon, JL .
PHYSICAL REVIEW B, 2005, 72 (07)
[7]   Field-programmable rectification in rutile TiO2 crystals [J].
Jameson, John R. ;
Fukuzumi, Yoshiaki ;
Wang, Zheng ;
Griffin, Peter ;
Tsunoda, Koji ;
Meijer, G. Ingmar ;
Nishi, Yoshio .
APPLIED PHYSICS LETTERS, 2007, 91 (11)
[8]   Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films [J].
Kim, Kyung Min ;
Choi, Byung Joon ;
Shin, Yong Cheol ;
Choi, Seol ;
Hwang, Cheol Seong .
APPLIED PHYSICS LETTERS, 2007, 91 (01)
[9]   Hysteresis caused by water molecules in carbon nanotube field-effect transistors [J].
Kim, W ;
Javey, A ;
Vermesh, O ;
Wang, O ;
Li, YM ;
Dai, HJ .
NANO LETTERS, 2003, 3 (02) :193-198
[10]  
Kofstad P, 1972, NONSTOICHIOMETRY DIF, P208