A STABLE LARGE DEFORMATION CORRECTED SPH METHOD BASED ON STABILIZED CONFORMING NODAL INTEGRATION AND LAGRANGIAN KERNELS

被引:1
作者
Wang, S. [1 ]
机构
[1] Wuhan Univ Technol, Fac Engn, Wuhan 430070, Hubei, Peoples R China
关键词
Computational mechanics; applied mathematics; fracture mechanics; applied mechanics; FINITE-ELEMENT-METHOD; POINT INTERPOLATION METHOD; MESHFREE THIN SHELL; PARTICLE METHODS; DYNAMIC FRACTURE; CRACK INITIATION; MESHLESS METHODS; SHEAR BANDS; ALPHA-FEM; CONCRETE;
D O I
10.1142/S0219876212500570
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we propose a Galerkin-based smoothed particle hydrodynamics (SPH) formulation with moving least-squares meshless approximation, applied to solid mechanics and large deformation. Our method is truly meshless and based on Lagrangian kernel formulation and stabilized nodal integration. The performance of the methodology proposed is tested through various simulations, demonstrating the attractive ability of particle methods to handle severe distortions and complex phenomena.
引用
收藏
页数:26
相关论文
共 104 条
[41]  
Le PBH, 2010, CMES-COMP MODEL ENG, V66, P25
[42]  
Le PBH, 2010, CMES-COMP MODEL ENG, V61, P63
[43]  
Li S., 2003, INT J COMPUTATIONAL, V6, P1
[44]   Mesh-free Galerkin simulations of dynamic shear band propagation and failure mode transition [J].
Li, SF ;
Liu, WK ;
Rosakis, AJ ;
Belytschko, T ;
Hao, W .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2002, 39 (05) :1213-1240
[45]   Mesh-free simulations of shear banding in large deformation [J].
Li, SF ;
Hao, W ;
Liu, WK .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2000, 37 (48-50) :7185-7206
[46]   A novel alpha finite element method (αFEM) for exact solution to mechanics problems using triangular and tetrahedral elements [J].
Liu, G. R. ;
Nguyen-Thoi, T. ;
Lam, K. Y. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (45-48) :3883-3897
[47]   Theoretical aspects of the smoothed finite element method (SFEM) [J].
Liu, G. R. ;
Nguyen, T. T. ;
Dai, K. Y. ;
Lam, K. Y. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2007, 71 (08) :902-930
[48]   A smoothed finite element method for mechanics problems [J].
Liu, G. R. ;
Dai, K. Y. ;
Nguyen, T. T. .
COMPUTATIONAL MECHANICS, 2007, 39 (06) :859-877
[49]   A theoretical study on the smoothed FEM (S-FEM) models: Properties, accuracy and convergence rates [J].
Liu, G. R. ;
Nguyen-Xuan, H. ;
Nguyen-Thoi, T. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 84 (10) :1222-1256
[50]   An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids [J].
Liu, G. R. ;
Nguyen-Thoi, T. ;
Lam, K. Y. .
JOURNAL OF SOUND AND VIBRATION, 2009, 320 (4-5) :1100-1130