Seed protein content and its relationships with agronomic traits in pigeonpea is controlled by both main and epistatic effects QTLs

被引:19
作者
Obala, Jimmy [1 ,2 ]
Saxena, Rachit K. [1 ]
Singh, Vikas K. [1 ]
Kale, Sandip M. [1 ]
Garg, Vanika [1 ]
Kumar, C. V. Sameer [3 ]
Saxena, K. B. [4 ]
Tongoona, Pangirayi [2 ]
Sibiya, Julia [2 ]
Varshney, Rajeev K. [1 ]
机构
[1] Int Crops Res Inst Semi Arid Trop, Hyderabad 502324, India
[2] Univ KwaZulu Natal, African Ctr Crop Improvement, ZA-3209 Pietermaritzburg, South Africa
[3] Prof Jayashankar Telangana State Agr Univ, Hyderabad 500030, Telangana, India
[4] Int Crops Res Inst Semi Arid Trop, 17 NMC Housing, Abu Dhabi, U Arab Emirates
关键词
GROWTH HABIT; MULTIPLE POPULATIONS; GENETIC-ANALYSIS; CANDIDATE GENES; FLOWERING-TIME; GRAIN-YIELD; IDENTIFICATION; LOCI; REVEALS; DISEASE;
D O I
10.1038/s41598-019-56903-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The genetic architecture of seed protein content (SPC) and its relationships to agronomic traits in pigeonpea is poorly understood. Accordingly, five F-2 populations segregating for SPC and four agronomic traits (seed weight (SW), seed yield (SY), growth habit (GH) and days to first flowering (DFF)) were phenotyped and genotyped using genotyping-by-sequencing approach. Five high-density population-specific genetic maps were constructed with an average inter-marker distance of 1.6 to 3.5 cM, and subsequently, integrated into a consensus map with average marker spacing of 1.6 cM. Based on analysis of phenotyping data and genotyping data, 192 main effect QTLs (M-QTLs) with phenotypic variation explained (PVE) of 0.7 to 91.3% were detected for the five traits across the five populations. Major effect (PVE = 10%) M-QTLs included 14 M-QTLs for SPC, 16 M-QTLs for SW, 17 M-QTLs for SY, 19 M-QTLs for GH and 24 M-QTLs for DFF. Also, 573 epistatic QTLs (E-QTLs) were detected with PVE ranging from 6.3 to 99.4% across traits and populations. Colocalization of M-QTLs and E-QTLs explained the genetic basis of the significant (P < 0.05) correlations of SPC with SW, SY, DFF and GH. The nature of genetic architecture of SPC and its relationship with agronomic traits suggest that genomics-assisted breeding targeting genome-wide variations would be effective for the simultaneous improvement of SPC and other important traits.
引用
收藏
页数:17
相关论文
共 86 条
[31]   Discovery and mapping of Brassica juncea Sdt 1 gene associated with determinate plant growth habit [J].
Kaur, Harjeevan ;
Banga, S. S. .
THEORETICAL AND APPLIED GENETICS, 2015, 128 (02) :235-245
[32]   Crop wild relatives of pigeonpea [Cajanus cajan (L.) Millsp.]: Distributions, ex situ conservation status, and potential genetic resources for abiotic stress tolerance [J].
Khoury, Colin K. ;
Castaneda-Alvarez, Nora P. ;
Achicanoy, Harold A. ;
Sosa, Chrystian C. ;
Bernau, Vivian ;
Kassa, Mulualem T. ;
Norton, Sally L. ;
van der Maesen, L. Jos G. ;
Upadhyaya, Hari D. ;
Ramirez-Villegas, Julian ;
Jarvis, Andy ;
Struik, Paul C. .
BIOLOGICAL CONSERVATION, 2015, 184 :259-270
[33]   Identification of QTL markers contributing to plant growth, oil yield and fatty acid composition in the oilseed crop Jatropha curcas L. [J].
King, Andrew J. ;
Montes, Luis R. ;
Clarke, Jasper G. ;
Itzep, Jose ;
Perez, Cesar A. A. ;
Jongschaap, Raymond E. E. ;
Visser, Richard G. F. ;
van Loo, Eibertus N. ;
Graham, Ian A. .
BIOTECHNOLOGY FOR BIOFUELS, 2015, 8
[34]   QTL for yield components and protein content: a multienvironment study of two pea (Pisum sativum L.) populations [J].
Krajewski, P. ;
Bocianowski, J. ;
Gawlowska, M. ;
Kaczmarek, Z. ;
Pniewski, T. ;
Swiecicki, W. ;
Wolko, B. .
EUPHYTICA, 2012, 183 (03) :323-336
[35]   Proteomic Analysis of Pigeonpea (Cajanus cajan) Seeds Reveals the Accumulation of Numerous Stress-Related Proteins [J].
Krishnan, Hari B. ;
Natarajan, Savithiry S. ;
Oehrle, Nathan W. ;
Garrett, Wesley M. ;
Darwish, Omar .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2017, 65 (23) :4572-4581
[36]   First-generation HapMap in Cajanus spp. reveals untapped variations in parental lines of mapping populations [J].
Kumar, Vinay ;
Khan, Aamir W. ;
Saxena, Rachit K. ;
Garg, Vanika ;
Varshney, Rajeev K. .
PLANT BIOTECHNOLOGY JOURNAL, 2016, 14 (08) :1673-1681
[37]   Molecular mapping of QTLs for plant type and earliness traits in pigeonpea (Cajanus cajan L. Millsp.) [J].
Kumawat, Giriraj ;
Raje, Ranjeet S. ;
Bhutani, Shefali ;
Pal, Jitendra K. ;
Mithra, Amitha S. V. C. R. ;
Gaikwad, Kishor ;
Sharma, Tilak R. ;
Singh, Nagendra K. .
BMC GENETICS, 2012, 13
[38]   Gene divergence of homeologous regions associated with a major seed protein content QTL in soybean [J].
Lestari, Puji ;
Van, Kyujung ;
Lee, Jayern ;
Kang, Yang Jae ;
Lee, Suk-Ha .
FRONTIERS IN PLANT SCIENCE, 2013, 4
[39]   A high density GBS map of bread wheat and its application for dissecting complex disease resistance traits [J].
Li, Huihui ;
Vikram, Prashant ;
Prakash Singh, Ravi ;
Kilian, Andrzej ;
Carling, Jason ;
Song, Jie ;
Andres Burgueno-Ferreira, Juan ;
Bhavani, Sridhar ;
Huerta-Espino, Julio ;
Payne, Thomas ;
Sehgal, Deepmala ;
Wenzl, Peter ;
Singh, Sukhwinder .
BMC GENOMICS, 2015, 16
[40]   QQS orphan gene regulates carbon and nitrogen partitioning across species via NF-YC interactions [J].
Li, Ling ;
Zheng, Wenguang ;
Zhu, Yanbing ;
Ye, Huaxun ;
Tang, Buyun ;
Arendsee, Zebulun W. ;
Jones, Dallas ;
Li, Ruoran ;
Ortiz, Diego ;
Zhao, Xuefeng ;
Du, Chuanlong ;
Nettleton, Dan ;
Scott, M. Paul ;
Salas-Fernandez, Maria G. ;
Yin, Yanhai ;
Wurtele, Eve Syrkin .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (47) :14734-14739