Oscillation criteria for impulsive parabolic differential equations with delay

被引:40
作者
Fu, XL [1 ]
Liu, XZ
Sivaloganathan, S
机构
[1] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
[2] Shandong Normal Univ, Dept Math, Jinan 250014, Shandong, Peoples R China
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
parabolic system; impulsive; delay; oscillation;
D O I
10.1006/jmaa.2001.7840
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate a class of nonlinear impulsive parabolic systems with delay. Several oscillation criteria are established for such systems subject to two different boundary conditions by employing Gauss' divergence theorem and certain impulsive delay differential inequalities. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:647 / 664
页数:18
相关论文
共 8 条
[1]   Asymptotic behaviour of solutions of impulsive semilinear parabolic equations [J].
Bainov, DD ;
Minchev, E ;
Nakagawa, K .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (05) :2725-2734
[2]   COMPARISON PRINCIPLES FOR IMPULSIVE PARABOLIC EQUATIONS WITH APPLICATIONS TO MODELS OF SINGLE SPECIES GROWTH [J].
ERBE, LH ;
FREEDMAN, HI ;
LIU, XZ ;
WU, JH .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1991, 32 :382-400
[3]  
Fu XL, 1997, DYN CONTIN DISCRET I, V3, P225
[4]   ON DELAY DIFFERENTIAL-EQUATIONS WITH IMPULSES [J].
GOPALSAMY, K ;
ZHANG, BG .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 139 (01) :110-122
[5]  
LIASHKO SI, 1989, DOKL AKAD NAUK SSSR+, V306, P276
[7]  
Trudinger NS, 1977, ELLIPTIC PARTIAL DIF, DOI DOI 10.1007/978-3-642-96379-7
[8]  
ZHANG L, 1999, ACAD PERIODICAL ABST, V5, P492