Thermal Performance of Alginate Concrete Reinforced with Basalt Fiber

被引:16
|
作者
Mohammadyan-Yasouj, Seyed Esmaeil [1 ]
Abbastabar Ahangar, Hossein [2 ]
Ahevani Oskoei, Narges [1 ]
Shokravi, Hoofar [3 ]
Rahimian Koloor, Seyed Saeid [4 ]
Petru, Michal [4 ]
机构
[1] Islamic Azad Univ, Najafabad Branch, Dept Civil Engn, Najafabad 8514143131, Iran
[2] Islamic Azad Univ, Najafabad Branch, Dept Chem, Najafabad 8514143131, Iran
[3] Univ Teknol Malaysia, Fac Engn, Sch Civil Engn, Skudai 81310, Johor, Malaysia
[4] Tech Univ Liberec TUL, Inst Nanomat Adv Technol & Innovat CXI, Studentska 2, Liberec 46117, Czech Republic
来源
CRYSTALS | 2020年 / 10卷 / 09期
关键词
concrete; sodium alginate; basalt fiber; compressive strength; temperature; MECHANICAL-PROPERTIES; BEHAVIOR; GLASS; ACID;
D O I
10.3390/cryst10090779
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
The sustainability of reinforced concrete structures is of high importance for practitioners and researchers, particularly in harsh environments and under extreme operating conditions. Buildings and tunnels are of the places that most of the fire cases take place. The use of fiber in concrete composite acts as crack arrestors to resist the development of cracks and enhance the performance of reinforced concrete structures subjected to elevated temperature. Basalt fiber is a low-carbon footprint green product obtained from the raw material of basalt which is created by the solidification of lava. It is a sustainable fiber choice for reinforcing concrete composite due to the less consumed energy in the production phase and not using chemical additives in their production. On the other hand, alginate is a natural anionic polymer acquired from cell walls of brown seaweed that can enhance the properties of composites due to its advantage as a hydrophilic gelling material. This paper investigates the thermal performance of alginate concrete reinforced with basalt fiber. For that purpose, an extensive literature review was carried out then two experimental phases for mix design and to investigate the compressive strength of samples at a temperature range of 100-180 degrees C were conducted. The results show that the addition of basalt fiber (BF) and/or alginate may slightly decrease the compressive strength compared to the control concrete under room temperature, but it leads to control decreasing compressive strength during exposure to a high temperature range of 100-180 degrees C. Moreover, it can be seen that temperature raise influences the rate of strength growth in alginate basalt fiber reinforced concrete.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [21] Flexural performance and damage evaluation on basalt fiber reinforced polymer (BFRP) sheet reinforced concrete
    He, Jintao
    Lei, Dong
    She, Zesheng
    Xi, Bin
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 395
  • [22] The Effect of Basalt Fiber on Concrete Performance under a Sulfate Attack Environment
    Su, Qiang
    Xu, Jinming
    JOURNAL OF RENEWABLE MATERIALS, 2023, 11 (01) : 233 - 244
  • [23] Compressive strength prediction of basalt fiber reinforced concrete via random forest algorithm
    Li, Hong
    Lin, Jiajian
    Lei, Xiaobao
    Wei, Tianxia
    MATERIALS TODAY COMMUNICATIONS, 2022, 30
  • [24] Experimental Study on the Performance of Glass/Basalt Fiber Reinforced Concrete Unidirectional Plate under Impact Load
    Li, Liancheng
    Chen, Jueliang
    Liu, Siyu
    Huang, Xin
    Chen, Hui
    BUILDINGS, 2024, 14 (05)
  • [25] The evaluation of calcium carbonate added and basalt fiber reinforced roller compacted high performance concrete for pavement
    Yildizel, Sadik Alper
    Tayeh, Bassam A.
    Uzun, Mehmet
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 17
  • [26] Study on mechanical properties and mechanism of new basalt fiber reinforced concrete
    Qin, Shuhao
    Wu, Liao
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2025, 22
  • [27] Property Assessment of Self-compacting Basalt Fiber Reinforced Concrete
    Smarzewski, Piotr
    FIBRE REINFORCED CONCRETE: IMPROVEMENTS AND INNOVATIONS II, BEFIB 2021, 2022, 36 : 186 - 197
  • [28] Mechanical Properties of Chopped Basalt Fiber-Reinforced Lightweight Aggregate Concrete and Chopped Polyacrylonitrile Fiber Reinforced Lightweight Aggregate Concrete
    Zeng, Yusheng
    Zhou, Xianyu
    Tang, Aiping
    Sun, Peng
    MATERIALS, 2020, 13 (07)
  • [29] Nonlinear Ultrasonic Characterization of Performance Variation of Basalt Fiber-Reinforced Concrete Subjected to Thermal Treatment and Water Curing
    Yang, Chenglong
    Chen, Jun
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2023, 35 (09)
  • [30] Properties of hybrid steel-basalt fiber reinforced concrete exposed to different surrounding conditions
    Khan, Mehran
    Cao, Mingli
    Chu, S. H.
    Ali, Majid
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 322