Randomized Matrix Factorization for Kalman Filtering

被引:0
作者
Bopardikar, Shaunak D. [1 ]
机构
[1] United Technol Res Ctr, E Hartford, CT 06108 USA
来源
2017 AMERICAN CONTROL CONFERENCE (ACC) | 2017年
关键词
Kalman filtering; Low-rank Matrix Factorization; Randomized Algorithms;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper discusses an application of randomized algorithms for matrix factorization to the classic Kalman filtering technique to estimate the state of a linear dynamical system. We consider the case when the state space is high dimensional leading to a high computational complexity in evaluating the state estimate and the estimation error covariance. We formalize two approaches based on the use of randomized matrix factorization - the first based on a singular value decomposition approach to Kalman filtering and the second based on approximating the prediction step using a randomized approach. We provide an analytic lower bound in the positive semidefinite sense on the estimation error covariance matrix for the first approach, and a lower and an upper bound for the same in the second approach, all of which hold with high probability. Finally, we provide numerical evidence validating the analytic results and also provide insight into the computational gain in the use of the two approaches on synthetically generated data.
引用
收藏
页码:5795 / 5800
页数:6
相关论文
共 15 条
[1]   Fast Kalman-Like Filtering for Large-Dimensional Linear and Gaussian State-Space Models [J].
Ait-El-Fquih, Boujemaa ;
Hoteit, Ibrahim .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (21) :5853-5867
[2]  
Bar- Shalom Y., 2009, ESTIMATION APPL TRAC
[3]   The scenario approach to robust control design [J].
Calafiore, Giuseppe C. ;
Campi, Marco C. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (05) :742-753
[4]   Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions [J].
Halko, N. ;
Martinsson, P. G. ;
Tropp, J. A. .
SIAM REVIEW, 2011, 53 (02) :217-288
[5]  
Kalman R. E., 1960, ASME J BASIC ENG, V82
[6]  
Li J. Y., 2014, WATER RESOURCES RES, V50
[7]  
Paninski L., 2010, J COMPUTATIONAL NEUR, V28
[8]  
Pnevmatikakis E., 2014, J COMPUTATIONAL GRAP, V23
[9]   A FAST KALMAN FILTER FOR TIME-LAPSE ELECTRICAL RESISTIVITY TOMOGRAPHY [J].
Saibaba, Arvind K. ;
Miller, Eric L. ;
Kitandis, Peter K. .
2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
[10]   Fast Kalman filter using hierarchical matrices and a low-rank perturbative approach [J].
Saibaba, Arvind K. ;
Miller, Eric L. ;
Kitanidis, Peter K. .
INVERSE PROBLEMS, 2015, 31 (01)