Transport of intensity diffraction tomography with non-interferometric synthetic aperture for three-dimensional label-free microscopy

被引:115
作者
Li, Jiaji [1 ,2 ,3 ]
Zhou, Ning [1 ,2 ,3 ]
Sun, Jiasong [1 ,2 ,3 ]
Zhou, Shun [1 ,2 ,3 ]
Bai, Zhidong [1 ,2 ,3 ]
Lu, Linpeng [1 ,2 ,3 ]
Chen, Qian [1 ,2 ]
Zuo, Chao [1 ,2 ,3 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Elect & Opt Engn, 200 Xiaolingwei St, Nanjing 210094, Jiangsu, Peoples R China
[2] Nanjing Univ Sci & Technol, Jiangsu Key Lab Spectral Imaging & Intelligent Se, Nanjing 210094, Jiangsu, Peoples R China
[3] Nanjing Univ Sci & Technol, Smart Computat Imaging Lab SCILab, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
PHASE-CONTRAST MICROSCOPY; RESOLUTION LIMIT; HIGH-THROUGHPUT; ILLUMINATION; FIELD;
D O I
10.1038/s41377-022-00815-7
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a new label-free three-dimensional (3D) microscopy technique, termed transport of intensity diffraction tomography with non-interferometric synthetic aperture (TIDT-NSA). Without resorting to interferometric detection, TIDT-NSA retrieves the 3D refractive index (RI) distribution of biological specimens from 3D intensity-only measurements at various illumination angles, allowing incoherent-diffraction-limited quantitative 3D phase-contrast imaging. The unique combination of z-scanning the sample with illumination angle diversity in TIDT-NSA provides strong defocus phase contrast and better optical sectioning capabilities suitable for high-resolution tomography of thick biological samples. Based on an off-the-shelf bright-field microscope with a programmable light-emitting-diode (LED) illumination source, TIDT-NSA achieves an imaging resolution of 206 nm laterally and 520 nm axially with a high-NA oil immersion objective. We validate the 3D RI tomographic imaging performance on various unlabeled fixed and live samples, including human breast cancer cell lines MCF-7, human hepatocyte carcinoma cell lines HepG2, mouse macrophage cell lines RAW 264.7, Caenorhabditis elegans (C. elegans), and live Henrietta Lacks (HeLa) cells. These results establish TIDT-NSA as a new non-interferometric approach to optical diffraction tomography and 3D label-free microscopy, permitting quantitative characterization of cell morphology and time-dependent subcellular changes for widespread biological and medical applications.
引用
收藏
页数:14
相关论文
共 69 条
[1]   TOTAL INTERNAL-REFLECTION FLUORESCENCE [J].
AXELROD, D ;
BURGHARDT, TP ;
THOMPSON, NL .
ANNUAL REVIEW OF BIOPHYSICS AND BIOENGINEERING, 1984, 13 :247-268
[2]   Total internal reflection fluorescence microscopy in cell biology [J].
Axelrod, D .
TRAFFIC, 2001, 2 (11) :764-774
[3]   Intensity-based holographic imaging via space-domain Kramers-Kronig relations [J].
Baek, YoonSeok ;
Park, YongKeun .
NATURE PHOTONICS, 2021, 15 (05) :354-360
[4]   Kramers-Kronig holographic imaging for high-space-bandwidth product [J].
Baek, YoonSeok ;
Lee, KyeoReh ;
Shin, Seungwoo ;
Park, YongKeun .
OPTICA, 2019, 6 (01) :45-51
[5]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[6]   Large-scale phase retrieval [J].
Chang, Xuyang ;
Bian, Liheng ;
Zhang, Jun .
ELIGHT, 2021, 1 (01)
[7]   Highlighting photonics: looking into the next decade [J].
Chen, Zhigang ;
Segev, Mordechai .
ELIGHT, 2021, 1 (01)
[8]   Tomographic phase microscopy [J].
Choi, Wonshik ;
Fang-Yen, Christopher ;
Badizadegan, Kamran ;
Oh, Seungeun ;
Lue, Niyom ;
Dasari, Ramachandra R. ;
Feld, Michael S. .
NATURE METHODS, 2007, 4 (09) :717-719
[9]  
Chowdhury S, 2019, OPTICA, V6, P1211, DOI [10.1364/OPTICA.6.001211, 10.1364/optica.6.001211]
[10]  
Cotte Y, 2013, NAT PHOTONICS, V7, P113, DOI [10.1038/nphoton.2012.329, 10.1038/NPHOTON.2012.329]