Uniform stability of homogeneous time-varying systems

被引:27
作者
Zhang, Bin [1 ]
Jia, Yingmin [2 ]
Du, Junping [3 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Automat, Beijing 100876, Peoples R China
[2] Beihang Univ, Res Div 7, Beijing, Peoples R China
[3] Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Strict Lyapunov functions; nonlinear time-varying systems; homogeneity; ASYMPTOTIC STABILITY; LMI CONDITIONS; SYNCHRONIZATION; EXCITATION;
D O I
10.1080/00207179.2019.1585954
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A sufficient condition for uniform asymptotic stability of nonlinear time-varying systems is proposed within the Narendra-Annaswamy (NA) framework. Based on homogeneity, a class of strict Lyapunov functions is established, in which time-varying terms are included. By using the new Lyapunov functions, concise criterion is provided. Unlike the classical NA approach, divergent time sequence in the criterion is not needed. The utility of our result is illustrated through the study of applications and numerical examples.
引用
收藏
页码:103 / 110
页数:8
相关论文
共 25 条
[1]   New asymptotic stability criterion for nonlinear time-variant differential equations [J].
Aeyels, D ;
Peuteman, J .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (07) :968-971
[2]   On exponential stability of nonlinear time-varying differential equations [J].
Aeyels, D ;
Peuteman, J .
AUTOMATICA, 1999, 35 (06) :1091-1100
[3]   Sufficient and Necessary LMI Conditions for Robust Stability of Rationally Time-Varying Uncertain Systems [J].
Chesi, Graziano .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (06) :1546-1551
[4]   LMI conditions for time-varying uncertain systems can be non-conservative [J].
Chesi, Graziano .
AUTOMATICA, 2011, 47 (03) :621-624
[5]  
dr Queiroz M.S., 2000, LYAPUNOV BASED CONTR, DOI 10.1007/978-1-4612-1352-9
[6]  
Gantmacher F. R., 2000, THEORY MATRICES
[7]  
Giesl P, 2015, DISCRETE CONT DYN-B, V20, P2291, DOI 10.3934/dcdsb.2015.20.2291
[8]  
Hancock EJ, 2012, IEEE DECIS CONTR P, P4597, DOI 10.1109/CDC.2012.6426537
[9]   Hybrid adaptive and impulsive synchronisation of uncertain complex dynamical networks by the generalised Barbalat's lemma [J].
Jiang, H. B. .
IET CONTROL THEORY AND APPLICATIONS, 2009, 3 (10) :1330-1340
[10]  
Khalil H. K, 2002, NONLINEAR SYSTEMS