The Cauchy problem for the Hartree type equation in modulation spaces

被引:8
作者
Bhimani, Divyang G. [1 ]
机构
[1] Harish Chandra Res Inst, Allahabad 211019, Uttar Pradesh, India
关键词
Hartree equation; Well-posedness; Modulation spaces; SCHRODINGER-EQUATIONS; FOURIER MULTIPLIERS;
D O I
10.1016/j.na.2015.10.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Cauchy problem for Hartree equation with cubic convolution nonlinearity F(u) = (K * vertical bar u vertical bar(2))u under a specified condition on potential K with Cauchy data in modulation spaces M-p,M-q(R-d). We establish global well-posedness results in M-1,M-1(R-d) when K(x) = lambda vertical bar x vertical bar(-gamma)(lambda subset of R, 0 < gamma < min{2, d/2}); in M-p,M-d(R-d) (1 <= q <= min{p, p'} where p' is the Holder conjugate of p is an element of [1, 2]) when K is in Fourier algebra FL1 (R-d), and local well-posedness result in M-p,M-1 (R-d) (1 <= p <= infinity) when K is an element of M-1,M-infinity (R-d). (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:190 / 201
页数:12
相关论文
共 19 条
[1]  
[Anonymous], 2001, Foundations of Time-Frequency Analysis, DOI DOI 10.1007/978-1-4612-0003-1
[2]  
Bahouri H., 2011, GRUNDLEHREN MATH WIS, V343
[3]   Unimodular Fourier multipliers for modulation spaces [J].
Benyi, Arpad ;
Groechenig, Karlheinz ;
Okoudjou, Kasso A. ;
Rogers, Luke G. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 246 (02) :366-384
[4]   Local well-posedness of nonlinear dispersive equations on modulation spaces [J].
Benyi, Arpad ;
Okoudjou, Kasso A. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 :549-558
[5]   ON THE CAUCHY PROBLEM FOR THE HARTREE TYPE EQUATION IN THE WIENER ALGEBRA [J].
Carles, Remi ;
Mouzaoui, Lounes .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (07) :2469-2482
[6]  
Cazenave T, 2003, Semilinear Schrodinger Equations
[7]   GLOBAL EXISTENCE OF SOLUTIONS TO CAUCHY-PROBLEM FOR TIME-DEPENDENT HARTREE EQUATIONS [J].
CHADAM, JM ;
GLASSEY, RT .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (05) :1122-1130
[8]   Sparsity of Gabor representation of Schrodinger propagators [J].
Cordero, Elena ;
Nicola, Fabio ;
Rodino, Luigi .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2009, 26 (03) :357-370
[9]   Remarks on Fourier multipliers and applications to the wave equation [J].
Cordero, Elena ;
Nicola, Fabio .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 353 (02) :583-591
[10]  
Feichtinger H.G., 2003, Technical Report, P99