RC-positive metrics on rationally connected manifolds

被引:9
作者
Yang, Xiaokui [1 ,2 ]
机构
[1] Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
关键词
rationally connected; RC-positivity; vanishing theorem; COMPACT KAHLER-MANIFOLDS; PROJECTIVE-MANIFOLDS; VECTOR-BUNDLES; THEOREM; SUBVARIETIES; COHOMOLOGY; VARIETIES; DIMENSION; CONVERSE;
D O I
10.1017/fms.2020.32
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove that if a compact Kahler manifold X has a smooth Hermitian metric omega such that (T-X, omega) is uniformly RC-positive, then X is projective and rationally connected. Conversely, we show that, if a projective manifold X is rationally connected, then there exists a uniformly RC-positive complex Finsler metric on T-X.
引用
收藏
页数:19
相关论文
共 54 条
[1]  
AEDO O, 2015, CONT MATH, P135
[2]   ON PROJECTIVIZED VECTOR BUNDLES AND POSITIVE HOLOMORPHIC SECTIONAL CURVATURE [J].
Alvarez, Angelynn ;
Heier, Gordon ;
Zheng, Fangyang .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (07) :2877-2882
[3]  
ANDREOTTI A, 1962, B SOC MATH FRANCE, V90, P193
[4]  
[Anonymous], 2014, Recent advances in Algebraic Geometry. LMS Lecture Notes Series
[5]  
[Anonymous], ARXIV150902149
[6]  
[Anonymous], 2011, Ann. Fac. Sci. Toulouse, Math.
[7]  
Boucksom S, 2013, J ALGEBRAIC GEOM, V22, P201
[8]   Big q-ample line bundles [J].
Brown, Morgan V. .
COMPOSITIO MATHEMATICA, 2012, 148 (03) :790-798
[9]   FUNDAMENTAL GROUP AND PLURIDIFFERENTIALS ON COMPACT KAHLER MANIFOLDS [J].
Brunebarbe, Yohan ;
Campana, Frederic .
MOSCOW MATHEMATICAL JOURNAL, 2016, 16 (04) :651-658
[10]   A CHARACTERIZATION OF AMPLE VECTOR-BUNDLES ON A CURVE [J].
CAMPANA, F ;
FLENNER, H .
MATHEMATISCHE ANNALEN, 1990, 287 (04) :571-575