Phytoremediation using genetically engineered plants to remove metals: a review

被引:52
作者
Ozyigit, Ibrahim Ilker [1 ,2 ]
Can, Hasan [3 ]
Dogan, Ilhan [4 ]
机构
[1] Marmara Univ, Dept Biol, Fac Sci & Arts, TR-34722 Istanbul, Turkey
[2] Kyrgyz Turkish Manas Univ, Dept Biol, Fac Sci, Bishkek 720038, Kyrgyzstan
[3] Kyrgyz Turkish Manas Univ, Dept Field Crops & Hort, Fac Agr, Bishkek 720038, Kyrgyzstan
[4] Sakarya Univ Appl Sci, Vocat Sch Hlth Serv Akyazi, Fac Hlth Sci, TR-54400 Sakarya, Turkey
关键词
Transgenics; Heavy metals; Contamination; Metal transporters; Uptake and accumulation; Plants; Toxicity; Environmental friendly; PYRACANTHA-COCCINEA ROEM; HAIRY ROOT CULTURES; SOLANUM-NIGRUM L; HEAVY-METALS; ARABIDOPSIS-THALIANA; PHYTOCHELATIN SYNTHASE; CONTAMINATED SOIL; TRANSGENIC PLANTS; AGROBACTERIUM-TUMEFACIENS; CADMIUM ACCUMULATION;
D O I
10.1007/s10311-020-01095-6
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Contamination by heavy metals including As, Cd, Co, Cu, Fe, Hg, Mn, Ni and Zn in agricultural fields is a global safety issue. Indeed, excessive accumulations of metals have detrimental effects on life by altering cell components such as lipids, proteins, enzymes and DNA. Phytoremediation appears as a solution to remove metals from contaminated sites, yet metal uptake is usually low in most common plants. Therefore, genetically engineered plants have been designed for higher efficiency of metal accumulation. Here, we review metal phytoremediation by genetically engineered plants with focus on metal uptake and transport, mechanisms involving phytochelatin and metallothionein proteins, toxicity, plant species, methods of gene transfer and gene editing.
引用
收藏
页码:669 / 698
页数:30
相关论文
共 340 条
[1]   Arsenic(V) biosorption by charred orange peel in aqueous environments [J].
Abid, Muhammad ;
Niazi, Nabeel Khan ;
Bibi, Irshad ;
Farooqi, Abida ;
Ok, Yong Sik ;
Kunhikrishnan, Anitha ;
Ali, Fawad ;
Ali, Shafaqat ;
Igalavithana, Avanthi Deshani ;
Arshad, Muhammad .
INTERNATIONAL JOURNAL OF PHYTOREMEDIATION, 2016, 18 (05) :442-449
[2]  
Agnihotri A, 2019, TRANSGENIC PLANT TECHNOLOGY FOR REMEDIATION OF TOXIC METALS AND METALLOIDS, P239, DOI 10.1016/B978-0-12-814389-6.00011-0
[3]  
Ahmad MalikM., 2017, Plant Biotechnology: Principles and Applications, P93, DOI DOI 10.1007/978-981-10-2961-5_4
[4]   Use of Pyracantha coccinea Roem. as a possible biomonitor for the selected heavy metals [J].
Akguc, N. ;
Ozyigit, I. I. ;
Yasar, U. ;
Leblebici, Z. ;
Yarci, C. .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2010, 7 (03) :427-434
[5]  
Akgüç N, 2008, PAK J BOT, V40, P1767
[6]   Bioaccumulation of HMW PAHs in the roots of wild blackberry from the Bor region (Serbia): Phytoremediation and biomonitoring aspects [J].
Alagic, Sladana C. ;
Jovanovic, Vesna P. Stankov ;
Mitic, Violeta D. ;
Cvetkovic, Jelena S. ;
Petrovic, Goran M. ;
Stojanovic, Gordana S. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2016, 562 :561-570
[7]   Phytoremediation of heavy metals-Concepts and applications [J].
Ali, Hazrat ;
Khan, Ezzat ;
Sajad, Muhammad Anwar .
CHEMOSPHERE, 2013, 91 (07) :869-881
[8]  
Alok A., 2017, Metabolic Engineering for Bioactive Compounds, P91, DOI DOI 10.1007/978-981-10-5511-9_5
[9]  
Anh B.T.K., 2017, Phytoremediation, P157
[10]   Glutathione and proline can coordinately make plants withstand the joint attack of metal(loid) and salinity stresses [J].
Anjum, Naser A. ;
Aref, Ibrahim M. ;
Duarte, Armando C. ;
Pereira, Eduarda ;
Ahmad, Iqbal ;
Iqbal, Muhammad .
FRONTIERS IN PLANT SCIENCE, 2014, 5