Mode I and Mode II fracture energy of MWCNT reinforced nanofibrilmats interleaved carbon/epoxy laminates

被引:105
作者
Hamer, Shay [1 ,2 ]
Leibovich, Herman [2 ]
Green, Anthony [2 ]
Avrahami, Ron [3 ]
Zussman, Eyal [3 ]
Siegmann, Arnon [1 ]
Sherman, Dov [1 ]
机构
[1] Technion Israel Inst Technol, Dept Mat Sci & Engn, IL-32000 Haifa, Israel
[2] Israel Aerosp Ind Ltd, Engn & Dev Grp, Mat Engn &Technol Dev, IL-70100 Lod, Israel
[3] Technion Israel Inst Technol, Dept Mech Engn, IL-32000 Haifa, Israel
关键词
Laminate; Carbon nanotubes; Hybrid composites; Interface; Fracture; DELAMINATION TOUGHNESS; POLYMER NANOFIBERS; IMPACT PROPERTIES; COMPOSITES; BEHAVIOR; NANOCOMPOSITES; DISPERSION; NANOTUBES;
D O I
10.1016/j.compscitech.2013.10.013
中图分类号
TB33 [复合材料];
学科分类号
摘要
Laboratory scale carbon/epoxy laminates were interleaved with electrospun Nylon 66 nanofibrilmat reinforced with multi wall carbon nanotubes (MWCNTs). The effect of the MWCNTs on the fracture energy was evaluated under Mode I and Mode II loading. It is shown that while nanofibrilmat interleaving resulted in a 3 times increase of the Mode I fracture energy compared to the non-interleaved laminates and the MWCNT reinforced nanofibrilmat interleaving resulted in a 4 times increase. Evaluation of the Mode II fracture energy indicated a 40% increase as a result of nanofibrilmats interleaving, while MWCNT reinforced nanofibrilmat interleaving resulted in a 60% increase. Mechanisms for the fracture energy increase of the MWCNT reinforced nanofibrilmats are suggested based on the test data and fractographic study of post-test specimen surfaces. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:48 / 56
页数:9
相关论文
共 53 条
[1]   INTERLAMINAR SHEAR FRACTURE OF INTERLEAVED GRAPHITE EPOXY COMPOSITES [J].
AKSOY, A ;
CARLSSON, LA .
COMPOSITES SCIENCE AND TECHNOLOGY, 1992, 43 (01) :55-69
[2]  
[Anonymous], 1954, Welding Journal Research Supplement, V33, p193s
[3]   Mode I and mode II interlaminar fracture toughness of CFRP laminates toughened by carbon nanofiber interlayer [J].
Arai, Masahiro ;
Noro, Yukihiro ;
Sugimoto, Koh-Ichi ;
Endo, Morinobu .
COMPOSITES SCIENCE AND TECHNOLOGY, 2008, 68 (02) :516-525
[4]  
Arcan L., 1987, Fractography of modern engineering materials: composites and metals, ASTM STP 948, P41
[5]   Influence of Resin Type on the Delamination Behavior of Carbon Fiber Reinforced Composites Under Mode-II Loading [J].
Argueelles, A. ;
Vina, J. ;
Canteli, A. F. ;
Bonhomme, J. .
INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, 2011, 20 (07) :963-978
[6]   Electrospun Polymer Nanofibers: Mechanical and Thermodynamic Perspectives [J].
Arinstein, Arkadii ;
Zussman, Eyal .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2011, 49 (10) :691-707
[7]   Impact properties of laminated composites with stitching fibers [J].
Byun, Joon-Hyung ;
Song, Sung-Wook ;
Lee, Chang-Hoon ;
Um, Moon-Kwang ;
Hwang, Byung-Sun .
COMPOSITE STRUCTURES, 2006, 76 (1-2) :21-27
[8]   FRACTURE-BEHAVIOR OF INTERLEAVED FIBER RESIN COMPOSITES [J].
CHEN, SF ;
JANG, BZ .
COMPOSITES SCIENCE AND TECHNOLOGY, 1991, 41 (01) :77-97
[9]   Characterization of multiwall carbon nanotubes and influence of surfactant in the nanocomposite processing [J].
Cui, S ;
Canet, R ;
Derre, A ;
Couzi, M ;
Delhaes, P .
CARBON, 2003, 41 (04) :797-809
[10]   Pure mode II fracture characterization of composite bonded joints [J].
de Moura, M. F. S. F. ;
Campilho, R. D. S. G. ;
Goncalves, J. P. M. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2009, 46 (06) :1589-1595