Numerical and experimental analyses of different magnetic thermodynamic cycles with an active magnetic regenerator

被引:73
作者
Plaznik, Uros [1 ]
Tusek, Jaka [1 ]
Kitanovski, Andrej [1 ]
Poredos, Alojz [1 ]
机构
[1] Univ Ljubljana, Fac Mech Engn, Ljubljana 1000, Slovenia
关键词
Magnetic refrigeration; Magnetic thermodynamic cycle; Active magnetic regenerator; Experimental analysis; Numerical analysis; REFRIGERATION; PERFORMANCE; OPTIMIZATION; AMR;
D O I
10.1016/j.applthermaleng.2013.05.019
中图分类号
O414.1 [热力学];
学科分类号
摘要
We have analyzed the influence of different magnetic thermodynamic cycles on the performance of a magnetic cooling device with an active magnetic regenerator (AMR) based on the Brayton, Ericsson and Hybrid Brayton-Ericsson cycles. Initially, a numerical simulation was performed using a 1D, time-dependent, numerical model. Then a comparison was made with respect to the cooling power and the COP for different temperature spans. We showed that applying the Ericsson or the Hybrid Brayton-Ericsson cycle with an AMR, instead of the standard Brayton cycle, can increase the efficiency of the selected cooling device. Yet, in the case of the Ericsson cycle, the cooling power was decreased compared to the Hybrid and especially compared to the Brayton cycle. Next, an experimental analysis was carried out using a linear-type magnetic cooling device. Again, the Brayton, Ericsson and Hybrid Brayton Ericsson cycles with an AMR were compared with respect to the cooling power and the COP for different temperature spans. The results of the numerical simulation were confirmed. The Hybrid Brayton Ericsson cycle with an AMR showed the best performance if a no-load temperature span was considered as a criterion. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:52 / 59
页数:8
相关论文
共 17 条
[1]  
[Anonymous], 1965, PHYS PRINCIPLES MAGN
[2]   The influence of the magnetic field on the performance of an active magnetic regenerator (AMR) [J].
Bjork, R. ;
Engelbrecht, K. .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2011, 34 (01) :192-203
[3]   THERMODYNAMIC ANALYSIS OF 4 MAGNETIC HEAT-PUMP CYCLES [J].
CHEN, FC ;
MURPHY, RW ;
MEI, VC ;
CHEN, GL .
JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 1992, 114 (04) :715-720
[4]   Experimental results for a magnetic refrigerator using three different types of magnetocaloric material regenerators [J].
Engelbrecht, K. ;
Bahl, C. R. H. ;
Nielsen, K. K. .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2011, 34 (04) :1132-1140
[5]  
Kitanovski A., 2012, 5 IIF IIR INT C MAGN, P365
[6]  
Kitanovski A., 2013, MAGNETIC COOLING FUN
[7]   Degradation of the performance of microchannel heat exchangers due to flow maldistribution [J].
Nielsen, K. K. ;
Engelbrecht, K. ;
Christensen, D. V. ;
Jensen, J. B. ;
Smith, A. ;
Bahl, C. R. H. .
APPLIED THERMAL ENGINEERING, 2012, 40 :236-247
[8]   Review on numerical modeling of active magnetic regenerators for room temperature applications [J].
Nielsen, K. K. ;
Tusek, J. ;
Engelbrecht, K. ;
Schopfer, S. ;
Kitanovski, A. ;
Bahl, C. R. H. ;
Smith, A. ;
Pryds, N. ;
Poredos, A. .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2011, 34 (03) :603-616
[9]   Magnetocaloric effect: A review of the thermodynamic cycles in magnetic refrigeration [J].
Romero Gomez, J. ;
Ferreiro Garcia, R. ;
De Miguel Catoira, A. ;
Romero Gomez, M. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 17 :74-82
[10]   A review of emerging technologies for food refrigeration applications [J].
Tassou, S. A. ;
Lewis, J. S. ;
Ge, Y. T. ;
Hadawey, A. ;
Chaer, I. .
APPLIED THERMAL ENGINEERING, 2010, 30 (04) :263-276