Factor XIII Cross-Linked Hyaluronan Hydrogels for Cartilage Tissue Engineering

被引:59
作者
Broguiere, Nicolas [1 ]
Cavalli, Emma [1 ]
Salzmann, Gian M. [2 ]
Applegate, Lee Ann [3 ]
Zenobi-Wong, Marcy [1 ]
机构
[1] ETH, Cartilage Engn & Regenerat Lab, HPL J20, Otto Stern Weg 7, CH-8093 Zurich, Switzerland
[2] Schulthess Klin, Lengghalde 2, CH-8008 Zurich, Switzerland
[3] Univ Lausanne Hosp, Dept Musculoskeletal Med, Regenerat Therapy Unit, CH-1011 Lausanne, Switzerland
来源
ACS BIOMATERIALS SCIENCE & ENGINEERING | 2016年 / 2卷 / 12期
基金
瑞士国家科学基金会;
关键词
cartilage; hyaluronan; chondroprogenitors; transglutaminase; bioadhesive; ARTICULAR-CARTILAGE; CHONDRAL FRAGMENTS; REPAIR; MICROFRACTURE; SCAFFOLD; MICROENVIRONMENTS; CHONDROGENESIS; IMPLANTATION; THERAPY; CLOSURE;
D O I
10.1021/acsbiomaterials.6b00378
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
In this study, transglutaminase-cross-linked hyaluronan (HA-TG) hydrogels are investigated for their potential to treat cartilage lesions. We show the hydrogels fulfill key requirements: they are simultaneously injectable, fast-gelling, biocompatible with encapsulated cells, mitogenic, chondroinductive, and form a stable and strongly adhesive bond to native cartilage. Human chondroprogenitors encapsulated in HA-TG gels simultaneously show good growth and chondrogenesis. Strikingly, within soft gels (similar to 1 kPa), chondroprogenitors proliferate and deposit extracellular matrix to the extent that the hydrogels reach a modulus (similar to 0.3 MPa) approaching that of native cartilage similar to 1 MPa) within 3 weeks. The combination of such an off-the-shelf human chondroprogenitor cell source with HA-TG hydrogels lays the foundation for a cell-based treatment for cartilage lesions which is based on a minimally invasive one-step procedure, with improved reproducibility due to the defined cells and with improved integration with the surrounding tissue due to the new hydrogel chemistry.
引用
收藏
页码:2176 / 2184
页数:9
相关论文
共 46 条
  • [1] Immune evasion by neocartilage-derived chondrocytes: Implications for biologic repair of joint articular cartilage
    Adkisson, H. D.
    Milliman, C.
    Zhang, X.
    Mauch, K.
    Maziarz, R. T.
    Streeter, P. R.
    [J]. STEM CELL RESEARCH, 2010, 4 (01) : 57 - 68
  • [2] Ahmed TAE, 2010, TISSUE ENG PART B-RE, V16, P305, DOI 10.1089/ten.TEB.2009.0590
  • [3] CLOSURE OF OSTEOCHONDRAL LESIONS USING CHONDRAL FRAGMENTS AND FIBRIN ADHESIVE
    ALBRECHT, F
    ROESSNER, A
    ZIMMERMANN, E
    [J]. ARCHIVES OF ORTHOPAEDIC AND TRAUMA SURGERY, 1983, 101 (03) : 213 - 217
  • [4] ALBRECHT FH, 1983, FORTSCHR MED, V101, P1650
  • [5] Review. Hyaluronan: A powerful tissue engineering tool
    Allison, David D.
    Grande-Allen, K. Jane
    [J]. TISSUE ENGINEERING, 2006, 12 (08): : 2131 - 2140
  • [6] Matrix-induced autologous chondrocyte implantation versus microfracture in the treatment of cartilage defects of the knee: a 2-year randomised study
    Basad, Erhan
    Ishaque, Bernd
    Bachmann, Georg
    Stuerz, Henning
    Steinmeyer, Juergen
    [J]. KNEE SURGERY SPORTS TRAUMATOLOGY ARTHROSCOPY, 2010, 18 (04) : 519 - 527
  • [7] Becerra J, 2010, TISSUE ENG PART B-RE, V16, P617, DOI 10.1089/ten.TEB.2010.0191
  • [8] Protein composition alters in vivo resorption of PEG-based hydrogels as monitored by contrast-enhanced MRI
    Berdichevski, Alexandra
    Shachaf, Yonatan
    Wechsler, Roni
    Seliktar, Dror
    [J]. BIOMATERIALS, 2015, 42 : 1 - 10
  • [9] Novel enzymatically cross-linked hyaluronan hydrogels support the formation of 3D neuronal networks
    Broguiere, Nicolas
    Isenmann, Luca
    Zenobi-Wong, Marcy
    [J]. BIOMATERIALS, 2016, 99 : 47 - 55
  • [10] Hyaluronic Acid Hydrogels for Biomedical Applications
    Burdick, Jason A.
    Prestwich, Glenn D.
    [J]. ADVANCED MATERIALS, 2011, 23 (12) : H41 - H56