Densest translational lattice packing of non-convex polygons

被引:6
作者
Milenkovic, VJ [1 ]
机构
[1] Univ Miami, Dept Comp Sci, Coral Gables, FL 33124 USA
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 2002年 / 22卷 / 1-3期
关键词
layout; packing; nesting; lattice packing; linear programming; quadratic programming;
D O I
10.1016/S0925-7721(01)00051-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A translational lattice packing of k polygons P-1, P-2, P-3,..., P-k, is a (non-overlapping) packing of the k polygons which is replicated without overlap at each point of a lattice i(0)nu(0) + i(1)nu(1), where nu(0) and v(1) are vectors generating the lattice and i(0) and i(1) range over all integers. A densest translational lattice packing is one which minimizes the area \nu(0) x nu(1)\ of the fundamental parallelogram. An algorithm and implementation is given for densest translational lattice packing. This algorithm has useful applications in industry, particularly clothing manufacture. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:205 / 222
页数:18
相关论文
共 15 条
[1]   Multiple translational containment .1. An approximate algorithm [J].
Daniels, K ;
Milenkovic, VJ .
ALGORITHMICA, 1997, 19 (1-2) :148-182
[2]  
DANIELS KM, 1995, THESIS HARVARD U CAM
[3]   COMPUTING THE INTERSECTION-DEPTH OF POLYHEDRA [J].
DOBKIN, D ;
HERSHBERGER, J ;
KIRKPATRICK, D ;
SURI, S .
ALGORITHMICA, 1993, 9 (06) :518-533
[4]   SOLUTION APPROACHES TO IRREGULAR NESTING PROBLEMS [J].
DOWSLAND, KA ;
DOWSLAND, WB .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1995, 84 (03) :506-521
[5]   PACKING PROBLEMS [J].
DOWSLAND, KA ;
DOWSLAND, WB .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1992, 56 (01) :2-14
[6]   A TYPOLOGY OF CUTTING AND PACKING PROBLEMS [J].
DYCKHOFF, H .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1990, 44 (02) :145-159
[7]   DOUBLE-LATTICE PACKINGS OF CONVEX-BODIES IN THE PLANE [J].
KUPERBERG, G ;
KUPERBERG, W .
DISCRETE & COMPUTATIONAL GEOMETRY, 1990, 5 (04) :389-397
[8]  
Li Z, 1994, THESIS HARVARD U CAM
[9]   COMPACTION AND SEPARATION ALGORITHMS FOR NONCONVEX POLYGONS AND THEIR APPLICATIONS [J].
LI, ZY ;
MILENKOVIC, V .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1995, 84 (03) :539-561
[10]   Multiple translational containment .2. Exact algorithms [J].
Milenkovic, V .
ALGORITHMICA, 1997, 19 (1-2) :183-218