The Intermediate Vertex Subalgebras of the Lattice Vertex Operator Algebras

被引:27
作者
Kawasetsu, Kazuya [1 ]
机构
[1] Univ Tokyo, Dept Math Sci, Komaba, Tokyo 1538914, Japan
关键词
vertex operator algebra; modular invariance; modular differential equation; Deligne dimension formula; intermediate Lie algebra; exceptional Lie algebra; principal subspace; MODULAR-FORMS; LIE-ALGEBRAS; REPRESENTATIONS; IDENTITIES; CHARACTERS;
D O I
10.1007/s11005-013-0658-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A notion of intermediate vertex subalgebras of lattice vertex operator algebras is introduced, as a generalization of the notion of principal subspaces. Bases and the graded dimensions of such subalgebras are given. As an application, it is shown that the characters of some modules of an intermediate vertex subalgebra between E (7) and E (8) lattice vertex operator algebras satisfy some modular differential equations. This result is an analogue of the result concerning the "hole" of the Deligne dimension formulas and the intermediate Lie algebra between the simple Lie algebras E-7 and E-8.
引用
收藏
页码:157 / 178
页数:22
相关论文
共 50 条
[21]   Twisted regular representations for vertex operator algebras [J].
Li, Haisheng ;
Sun, Jiancai .
JOURNAL OF ALGEBRA, 2023, 629 :124-161
[22]   Cluster algebras based on vertex operator algebras [J].
Zuevsky, Alexander .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2016, 30 (28-29)
[23]   On indecomposable vertex algebras associated with vertex algebroids [J].
Jitjankarn, Phichet ;
Yamskulna, Gaywalee .
JOURNAL OF ALGEBRA, 2020, 560 :791-817
[24]   Z3-twisted representations of lattice vertex operator algebras [J].
Lam, CH ;
Yamada, H .
COMMUNICATIONS IN ALGEBRA, 2003, 31 (06) :3001-3020
[25]   Orbifolds of lattice vertex operator algebras at d=48 and d=72 [J].
Gemunden, Thomas ;
Keller, Christoph A. .
JOURNAL OF ALGEBRA, 2019, 523 :93-118
[26]   2-Permutations of lattice vertex operator algebras: Higher rank [J].
Dong, Chongying ;
Xu, Feng ;
Yu, Nina .
JOURNAL OF ALGEBRA, 2017, 476 :1-25
[27]   On C2-cofiniteness of parafermion vertex operator algebras [J].
Dong, Chongying ;
Wang, Qing .
JOURNAL OF ALGEBRA, 2011, 328 (01) :420-431
[28]   Affine Vertex Operator Algebras and Modular Linear Differential Equations [J].
Arike, Yusuke ;
Kaneko, Masanobu ;
Nagatomo, Kiyokazu ;
Sakai, Yuichi .
LETTERS IN MATHEMATICAL PHYSICS, 2016, 106 (05) :693-718
[29]   QUANTUM DIMENSIONS AND FUSION RULES FOR PARAFERMION VERTEX OPERATOR ALGEBRAS [J].
Dong, Chongying ;
Wang, Qing .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (04) :1483-1492
[30]   On associative algebras, modules and twisted modules for vertex operator algebras [J].
Yang, Jinwei .
JOURNAL OF ALGEBRA, 2015, 440 :354-378