The Intermediate Vertex Subalgebras of the Lattice Vertex Operator Algebras

被引:27
作者
Kawasetsu, Kazuya [1 ]
机构
[1] Univ Tokyo, Dept Math Sci, Komaba, Tokyo 1538914, Japan
关键词
vertex operator algebra; modular invariance; modular differential equation; Deligne dimension formula; intermediate Lie algebra; exceptional Lie algebra; principal subspace; MODULAR-FORMS; LIE-ALGEBRAS; REPRESENTATIONS; IDENTITIES; CHARACTERS;
D O I
10.1007/s11005-013-0658-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A notion of intermediate vertex subalgebras of lattice vertex operator algebras is introduced, as a generalization of the notion of principal subspaces. Bases and the graded dimensions of such subalgebras are given. As an application, it is shown that the characters of some modules of an intermediate vertex subalgebra between E (7) and E (8) lattice vertex operator algebras satisfy some modular differential equations. This result is an analogue of the result concerning the "hole" of the Deligne dimension formulas and the intermediate Lie algebra between the simple Lie algebras E-7 and E-8.
引用
收藏
页码:157 / 178
页数:22
相关论文
共 35 条
[1]  
Andrews GE., 1976, The Theory of Partitions, Encyclopedia of Mathematics and its Applications
[2]   Fermionic characters and arbitrary highest-weight integrable (sl)over-capr+1-modules [J].
Ardonne, E ;
Kedem, R ;
Stone, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 264 (02) :427-464
[3]  
Baxter R., 2007, Exactly Solved Models in Statistical Mechanics
[5]   Vertex-algebraic structure of the principal subspaces of level one modules for the untwisted affine Lie algebras of types A, D, E [J].
Calinescu, C. ;
Lepowsky, J. ;
Milas, A. .
JOURNAL OF ALGEBRA, 2010, 323 (01) :167-192
[6]   The Rogers-Selberg recursions, the Gordon-Andrews identities and intertwining operators [J].
Capparelli, S. ;
Lepowsky, J. ;
Milas, A. .
RAMANUJAN JOURNAL, 2006, 12 (03) :379-397
[7]  
Cohen AM, 1996, CR ACAD SCI I-MATH, V322, P427
[8]   A recurrence relation for characters of highest weight integrable modules for affine Lie algebras [J].
Cook, William J. ;
Li, Haisheng ;
Misra, Kailash C. .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2007, 9 (02) :121-133
[9]  
Deligne P, 1996, CR ACAD SCI I-MATH, V322, P321
[10]  
FEIGIN B, 1993, ARXIVHEPTH9308079