Stochastic Burgers PDEs with random coefficients and a generalization of the Cole-Hopf transformation

被引:5
作者
Englezos, Nikolaos [1 ]
Frangos, Nikolaos E. [2 ]
Kartala, Xanthi-Isidora [2 ]
Yannacopoulos, Athanasios N. [2 ]
机构
[1] Univ Piraeus, Dept Banking & Financial Management, Piraeus 18534, Greece
[2] Athens Univ Econ & Business, Dept Stat, Athens 10434, Greece
关键词
Stochastic Burgers equation; Random coefficients; Generalized Cole-Hopf transformation; Stochastic heat equation; Stochastic Feynman-Kac formulas; Controllability; Contingent claim pricing; DIFFERENTIAL-EQUATIONS; CONTROLLABILITY;
D O I
10.1016/j.spa.2013.03.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper studies forward and backward versions of the random Burgers equation (RBE) with stochastic coefficients. First, the celebrated Cole-Hopf transformation reduces the forward RBE to a forward random heat equation (RHE) that can be treated pathwise. Next we provide a connection between the backward Burgers equation and a system of FBSDEs. Exploiting this connection, we derive a generalization of the Cole-Hopf transformation which links the backward RBE with the backward RHE and investigate the range of its applicability. Stochastic Feynman-Kac representations for the solutions are provided. Explicit solutions are constructed and applications in stochastic control and mathematical finance are discussed. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:3239 / 3272
页数:34
相关论文
共 47 条
  • [1] Albeverio S., 2008, Lecture Notes in Mathematics, V1942
  • [2] Burgers turbulence
    Bec, Jeremie
    Khanin, Konstantin
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2007, 447 (1-2): : 1 - 66
  • [3] Stochastic burgers and KPZ equations from particle systems
    Bertini, L
    Giacomin, G
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 183 (03) : 571 - 607
  • [4] The Burgers superprocess
    Bonnet, Guillaume
    Adler, Robert J.
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2007, 117 (02) : 143 - 164
  • [5] Pathwise stochastic control problems and stochastic HJB equations
    Buckdahn, Rainer
    Ma, Jin
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2007, 45 (06) : 2224 - 2256
  • [6] Burgers J.M., 1939, Verh. Nederl. Akad. Wetensch. Afd. Natuurk. Sect, V17, P1
  • [7] Burgers J.M., 1974, The Nonlinear Diffusion Equation, DOI [10.1007/978-94-010-1745-9, DOI 10.1007/978-94-010-1745-9]
  • [8] GLOBAL CONTROLLABILITY OF NONVISCOUS AND VISCOUS BURGERS-TYPE EQUATIONS
    Chapouly, Marianne
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2009, 48 (03) : 1567 - 1599
  • [9] FEEDBACK-CONTROL FOR UNSTEADY-FLOW AND ITS APPLICATION TO THE STOCHASTIC BURGERS-EQUATION
    CHOI, HC
    TEMAM, R
    MOIN, P
    KIM, J
    [J]. JOURNAL OF FLUID MECHANICS, 1993, 253 : 509 - 543
  • [10] Statistical physics of vehicular traffic and some related systems
    Chowdhury, D
    Santen, L
    Schadschneider, A
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 329 (4-6): : 199 - 329