Interplay between charge density wave order and superconductivity in LaAuSb2 under pressure

被引:13
作者
Du, F. [1 ,2 ]
Su, H. [1 ,2 ]
Luo, S. S. [1 ,2 ]
Shen, B. [1 ,2 ]
Nie, Z. Y. [1 ,2 ]
Yin, L. C. [1 ,2 ]
Chen, Y. [1 ,2 ]
Li, R. [1 ,2 ]
Smidman, M. [1 ,2 ,3 ]
Yuan, H. Q. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Zhejiang Univ, Ctr Correlated Matter, Hangzhou 310058, Peoples R China
[2] Zhejiang Univ, Dept Phys, Hangzhou 310058, Peoples R China
[3] Zhejiang Univ, Dept Phys, Zhejiang Prov Key Lab Quantum Technol & Device, Hangzhou 310058, Peoples R China
[4] Zhejiang Univ, State Key Lab Silicon Mat, Hangzhou 310058, Peoples R China
[5] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
TRANSITION-TEMPERATURE; TRANSPORT; SPIN;
D O I
10.1103/PhysRevB.102.144510
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report superconductivity below T-c = 0.64 K in the charge density wave (CDW) ordered material LaAuSb2, from measurements of the electrical resistivity, specific heat, and ac magnetic susceptibility. To investigate the interplay between superconductivity and CDW order in LaAuSb2, we measured the resistivity under pressures up to 2.0 GPa and constructed the temperature-pressure phase diagram. With the application of pressure, T-c increases gradually before exhibiting a sudden jump at around 0.64 GPa, while the CDW order is suppressed to lower temperatures before abruptly vanishing at the same pressure. We suggest that the jump of T-c may be due to the enhancement of the density of states with the closure of the CDW energy gap when CDW order is suppressed. On the other hand, the normalized upper critical field Ha changes little with pressure, suggesting that orbital limiting is the dominant pair-breaking mechanism in LaAuSb2.
引用
收藏
页数:5
相关论文
共 25 条
[1]   Effect of pressure and chemical substitutions on the charge-density-wave in LaAgSb2 [J].
Bud'ko, S. L. ;
Wiener, T. A. ;
Ribeiro, R. A. ;
Canfield, P. C. ;
Lee, Y. ;
Vogt, T. ;
Lacerda, A. H. .
PHYSICAL REVIEW B, 2006, 73 (18)
[2]   Charge density waves in strongly correlated electron systems [J].
Chen, Chih-Wei ;
Choe, Jesse ;
Morosan, E. .
REPORTS ON PROGRESS IN PHYSICS, 2016, 79 (08)
[3]   Iron-based high transition temperature superconductors [J].
Chen, Xianhui ;
Dai, Pengcheng ;
Feng, Donglai ;
Xiang, Tao ;
Zhang, Fu-Chun .
NATIONAL SCIENCE REVIEW, 2014, 1 (03) :371-395
[4]   Competition of charge-density waves and superconductivity in sulfur [J].
Degtyareva, O. ;
Magnitskaya, M. V. ;
Kohanoff, J. ;
Profeta, G. ;
Scandolo, S. ;
Hanfland, M. ;
McMahon, M. I. ;
Gregoryanz, E. .
PHYSICAL REVIEW LETTERS, 2007, 99 (15)
[5]   Charge- and spin-density waves in existing superconductors: competition between Cooper pairing and Peierls or excitonic instabilities [J].
Gabovich, AM ;
Voitenko, AI ;
Ausloos, M .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 367 (06) :583-709
[6]   THE DYNAMICS OF CHARGE-DENSITY WAVES [J].
GRUNER, G .
REVIEWS OF MODERN PHYSICS, 1988, 60 (04) :1129-1182
[7]  
Gruner T, 2017, NAT PHYS, V13, P967, DOI [10.1038/nphys4191, 10.1038/NPHYS4191]
[8]   Superconductivity and multiple pressure-induced phases in BaPt2As2 [J].
Guo, C. Y. ;
Jiang, W. B. ;
Smidman, M. ;
Han, F. ;
Malliakas, C. D. ;
Shen, B. ;
Wang, Y. F. ;
Chen, Y. ;
Lu, X. ;
Kanatzidis, M. G. ;
Yuan, H. Q. .
PHYSICAL REVIEW B, 2016, 94 (18)
[9]   Electronic band calculation of LaTSb2 (T=Cu, Ag, Au) [J].
Hase, I. ;
Yanagisawa, T. .
PROCEEDINGS OF THE 26TH INTERNATIONAL SYMPOSIUM ON SUPERCONDUCTIVITY (ISS 2013), 2014, 58 :42-45
[10]  
Joe YI, 2014, NAT PHYS, V10, P421, DOI [10.1038/NPHYS2935, 10.1038/nphys2935]