Statistical resilience of random populations to random perturbations

被引:13
作者
Eliazar, Iddo [1 ]
Klafter, Joseph [2 ,3 ]
机构
[1] Holon Inst Technol, Dept Technol Management, IL-58102 Holon, Israel
[2] Univ Freiburg, Freiburg Inst Adv Studies FRIAS, D-79104 Freiburg, Germany
[3] Tel Aviv Univ, Sackler Fac Exact Sci, Sch Chem, IL-69978 Tel Aviv, Israel
来源
PHYSICAL REVIEW E | 2009年 / 79卷 / 01期
关键词
fractals; random processes; statistical distributions; stochastic processes; POISSON PROCESSES; ZIPFS LAW; DISTRIBUTIONS; NETWORKS;
D O I
10.1103/PhysRevE.79.011103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider populations represented by random collections of real-valued points, and explore their statistical resilience to random perturbations-seeking populations whose statistics remain qualitatively unchanged by the action of arbitrary random perturbations of a certain type. Studying a general physical perturbation scheme, we obtain an explicit characterization of statistically resilient populations, show that these objects are fractal, and comprehensively analyze their topological and statistical structures. An application of statistical resilience attained is an alternative explanation of the ubiquity of power-law statistics.
引用
收藏
页数:9
相关论文
共 27 条