Diffusion mechanism of lithium ions in LiNi0.5Mn1.5O4

被引:16
作者
Seyyedhosseinzadeh, H. [1 ]
Mahboubi, F. [1 ]
Azadmehr, A. [1 ]
机构
[1] Amirkabir Univ Technol, Dept Min & Met Engn, Tehran, Iran
关键词
LiNi0.5Mn1.5O4; Diffusion mechanism; Diffusion constant; Activation energy; Li-ion battery; DENSITY-FUNCTIONAL THEORY; INTERCALATION; BATTERIES; CATHODES;
D O I
10.1016/j.electacta.2013.07.034
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
LiNi0.5Mn1.5O4 is suitable for electrochemical applications as an active material. This material has capability for high rate application in Li-ion battery. In this research, the diffusion mechanism of Li ions in LiNi0.5Mn1.5O4 was studied by chronoamperometry technique and computer simulation (ab initio and Fickian approach). According to the results, two bulk diffusion constants were calculated for LiNi0.5Mn1.5O4 during intercalation or deintercalation. At low concentration of Li ions in LiNi0.5Mn1.5O4, the diffusion constant was about 10(-9) cm(2)/s and for other Li ions concentration, it was about 10(-11) cm(2)/s. In addition, the diffusion constant at the surface of LiNi0.5Mn1.5O4 was estimated 10(-8) cm2/s by a semi empirical model. So, the diffusion constant of Li ions in LiNi0.5Mn1.5O4 has been estimated in the range of 10(-8) to 10(-11) cm(2)/s. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:867 / 875
页数:9
相关论文
共 30 条
[1]   Structure and insertion properties of disordered and ordered LN0.5Mn1.5O4 spinels prepared by wet chemistry [J].
Amdouni, N. ;
Zaghib, K. ;
Gendron, F. ;
Mauger, A. ;
Julien, C. M. .
IONICS, 2006, 12 (02) :117-126
[2]   BAND THEORY AND MOTT INSULATORS - HUBBARD-U INSTEAD OF STONER-I [J].
ANISIMOV, VI ;
ZAANEN, J ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1991, 44 (03) :943-954
[3]   Chemical interactions in the cathode half-cell of lithium-ion batteries - Part I. Thermodynamic simulation [J].
Bushkova, O. V. ;
Andreev, O. L. ;
Batalov, N. N. ;
Shkerin, S. N. ;
Kuznetsov, M. V. ;
Tyutyunnik, A. P. ;
Koryakova, O. V. ;
Song, E. H. ;
Chung, H. J. .
JOURNAL OF POWER SOURCES, 2006, 157 (01) :477-482
[4]   Opportunities and challenges for first-principles materials design and applications to Li battery materials [J].
Ceder, Gerbrand .
MRS BULLETIN, 2010, 35 (09) :693-701
[5]   Modeling detailed chemistry and transport for solid-electrolyte-interface (SEI) films in Li-ion batteries [J].
Colclasure, Andrew M. ;
Smith, Kandler A. ;
Kee, Robert J. .
ELECTROCHIMICA ACTA, 2011, 58 :33-43
[6]   Study of LiNi0.5Mn1.5O4 synthesized via a chloride-ammonia co-precipitation method: Electrochemical performance, diffusion coefficient and capacity loss mechanism [J].
Fang, X. ;
Ding, N. ;
Feng, X. Y. ;
Lu, Y. ;
Chen, C. H. .
ELECTROCHIMICA ACTA, 2009, 54 (28) :7471-7475
[7]   ELECTRODES FOR LITHIUM BATTERIES [J].
GOODENOUGH, JB ;
MANTHIRAM, A ;
WNETRZEWSKI, B .
JOURNAL OF POWER SOURCES, 1993, 43 (1-3) :269-275
[8]   A high-throughput infrastructure for density functional theory calculations [J].
Jain, Anubhav ;
Hautier, Geoffroy ;
Moore, Charles J. ;
Ong, Shyue Ping ;
Fischer, Christopher C. ;
Mueller, Tim ;
Persson, Kristin A. ;
Ceder, Gerbrand .
COMPUTATIONAL MATERIALS SCIENCE, 2011, 50 (08) :2295-2310
[9]   Lattice vibrations of materials for lithium rechargeable batteries. VI: Ordered spinels [J].
Julien, C. M. ;
Gendron, F. ;
Amdouni, A. ;
Massot, A. .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2006, 130 (1-3) :41-48
[10]   First principles predictions for intercalation behaviour [J].
Koudriachova, MV ;
Harrison, NM ;
de Leeuw, SW .
SOLID STATE IONICS, 2004, 175 (1-4) :829-834