Omnibus Sequences, Coupon Collection, and Missing Word Counts

被引:6
作者
Abraham, Sunil [1 ]
Brockman, Greg [2 ]
Sapp, Stephanie [3 ]
Godbole, Anant P. [4 ]
机构
[1] Univ Oxford, Oxford, England
[2] MIT, Cambridge, MA 02139 USA
[3] Univ Calif Berkeley, Berkeley, CA 94720 USA
[4] E Tennessee State Univ, Johnson City, TN 37614 USA
基金
美国国家科学基金会;
关键词
Coupon collection; Omnibus sequences; Extreme value distribution;
D O I
10.1007/s11009-011-9247-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the properties of k-omnisequences of length n, defined to be strings of length n that contain all strings of smaller length k embedded as (not necessarily contiguous) subsequences. We start by proving an elementary result that relates our problem to the classical coupon collector problem. After a short survey of relevant results in coupon collection, we focus our attention on the number M of strings (or words) of length k that are not found as subsequences of an n string, showing that there is a gap between the probability threshold for the emergence of an omnisequence and the zero-infinity threshold for .
引用
收藏
页码:363 / 378
页数:16
相关论文
共 24 条
  • [1] The coupon-collector's problem revisited
    Adler, I
    Oren, S
    Ross, SM
    [J]. JOURNAL OF APPLIED PROBABILITY, 2003, 40 (02) : 513 - 518
  • [2] The coupon subset collection problem
    Adler, I
    Ross, SM
    [J]. JOURNAL OF APPLIED PROBABILITY, 2001, 38 (03) : 737 - 746
  • [3] Aldous D., 1989, Probability approximations via the Poisson clumping heuristic, V77
  • [4] [Anonymous], 1972, COMBINATORIAL IDENTI
  • [5] Badus A, 2003, 2003 PERM PATT C DUN
  • [6] Barbour A.D., 1992, Poisson approximation
  • [7] SOME APPLICATIONS OF THE STEIN-CHEN METHOD FOR PROVING POISSON CONVERGENCE
    BARBOUR, AD
    HOLST, L
    [J]. ADVANCES IN APPLIED PROBABILITY, 1989, 21 (01) : 74 - 90
  • [8] Erdos P., 1961, Magyar Tud. Akad. Mat. Kutato Int. Kozl, V6, P215
  • [9] Feller W., 1968, INTRO PROBABILITY TH
  • [10] Flajolet P., 2009, ANAL COMBINATORICS