A non-renormalization theorem in gapped quantum field theory

被引:1
|
作者
Shacham, Tomer [1 ]
机构
[1] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2013年 / 05期
基金
美国国家科学基金会; 以色列科学基金会;
关键词
Chern-Simons Theories; Renormalization Group; TOPOLOGICAL MASS; TERM;
D O I
10.1007/JHEP05(2013)147
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We discuss the two-point functions of the U(1) current, and energy-momentum tensor in certain gapped three-dimensional field theories, and show that at zero momentum, the parity-odd part in both of these correlation functions is one-loop exact. In particular, we find a new and simplified derivation of the Coleman-Hill theorem that also clarifies several subtleties in the original argument. For the energy momentum tensor, our result means that the gravitational Chern-Simons term for the background metric does not receive quantum corrections.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A non-renormalization theorem in gapped quantum field theory
    Tomer Shacham
    Journal of High Energy Physics, 2013
  • [2] Localization and non-renormalization in Chern-Simons theory
    Fan, Yale
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, (01):
  • [3] Localization and non-renormalization in Chern-Simons theory
    Yale Fan
    Journal of High Energy Physics, 2019
  • [4] Non-linear non-renormalization theorems
    Weiguang Cao
    Franz Herzog
    Tom Melia
    Jasper Roosmale Nepveu
    Journal of High Energy Physics, 2023
  • [5] Renormalization and non-renormalization of scalar EFTs at higher orders
    Weiguang Cao
    Franz Herzog
    Tom Melia
    Jasper Roosmale Nepveu
    Journal of High Energy Physics, 2021
  • [6] Renormalization and non-renormalization of scalar EFTs at higher orders
    Cao, Weiguang
    Herzog, Franz
    Melia, Tom
    Nepveu, Jasper Roosmale
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (09)
  • [7] Non-linear non-renormalization theorems
    Cao, Weiguang
    Herzog, Franz
    Melia, Tom
    Nepveu, Jasper Roosmale
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (08)
  • [8] KAM Theorem and Quantum Field Theory
    Jean Bricmont
    Krzysztof Gawędzki
    Antti Kupiainen
    Communications in Mathematical Physics, 1999, 201 : 699 - 727
  • [9] Summing Logarithms in Quantum Field Theory: The Renormalization Group
    D. G. C. Mckeon
    International Journal of Theoretical Physics, 1998, 37 : 817 - 826
  • [10] Renormalization in Quantum Field Theory and the Riemann–Hilbert Problem I: The Hopf Algebra Structure of Graphs and the Main Theorem
    Alain Connes
    Dirk Kreimer
    Communications in Mathematical Physics, 2000, 210 : 249 - 273