Potts models with invisible states on general Bethe lattices

被引:12
作者
Ananikian, N. [1 ,2 ]
Izmailyan, N. Sh [1 ,2 ]
Johnston, D. A. [3 ,4 ]
Kenna, R. [2 ]
Ranasinghe, R. P. K. C. M. [5 ]
机构
[1] AI Alikhanyan Natl Sci Lab, Yerevan 375036, Armenia
[2] Coventry Univ, Appl Math Res Ctr, Coventry CV1 5FB, W Midlands, England
[3] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[4] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[5] Univ Sri Jayewardenepura, Dept Math, Gangodawila, Sri Lanka
关键词
ONE ISING-MODEL; PHASE-DIAGRAMS; TRANSITION; TREES;
D O I
10.1088/1751-8113/46/38/385002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The number of so-called invisible states which need to be added to the q-state Potts model to transmute its phase transition from continuous to first order has attracted recent attention. In the q = 2 case, a Bragg-Williams (mean-field) approach necessitates four such invisible states while a 3-regular random graph formalism requires seventeen. In both of these cases, the changeover from second-to first-order behaviour induced by the invisible states is identified through the tricritical point of an equivalent Blume-Emery-Griffiths model. Here we investigate the generalized Potts model on a Bethe lattice with z neighbours. We show that, in the q = 2 case, r(c)(z) = 4z/3(z-1) (z-1/z-2)(z) invisible states are required to manifest the equivalent Blume-Emery-Griffiths tricriticality. When z = 3, the 3-regular random graph result is recovered, while z ->infinity delivers the Bragg-Williams (mean-field) result.
引用
收藏
页数:10
相关论文
共 28 条
[11]   PHASE-DIAGRAMS OF 3-MATRIX MODEL [J].
FUKAZAWA, KJ ;
HAMADA, KJ ;
SATO, HT .
MODERN PHYSICS LETTERS A, 1990, 5 (29) :2431-2438
[12]   Potts models with (17) invisible states on thin graphs [J].
Johnston, D. A. ;
Ranasinghe, R. P. K. C. M. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (22)
[13]   Equivalence of ferromagnetic spin models on trees and random graphs [J].
Johnston, DA ;
Plechac, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (02) :475-482
[14]   Potts models on Feynman diagrams [J].
Johnston, DA ;
Plechac, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (21) :7349-7363
[15]   NONPERTURBATIVE ANALYSIS OF THE 3 MATRIX MODEL [J].
KUNITOMO, H ;
ODAKE, S .
PHYSICS LETTERS B, 1990, 247 (01) :57-63
[16]   NEW TYPE OF PHASE-TRANSITION [J].
MULLERHARTMANN, E ;
ZITTARTZ, J .
PHYSICAL REVIEW LETTERS, 1974, 33 (15) :893-897
[17]   Novel Spin-Liquid States in the Frustrated Heisenberg Antiferromagnet on the Honeycomb Lattice [J].
Okumura, Soichiro ;
Kawamura, Hikaru ;
Okubo, Tsuyoshi ;
Motome, Yukitoshi .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2010, 79 (11)
[18]   SOME GENERALIZED ORDER-DISORDER TRANSFORMATIONS [J].
POTTS, RB .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1952, 48 (01) :106-109
[19]   Quadrupolar correlations and spin freezing in S=1 triangular lattice antiferromagnets [J].
Stoudenmire, E. M. ;
Trebst, Simon ;
Balents, Leon .
PHYSICAL REVIEW B, 2009, 79 (21)
[20]  
Tamura R, 2013, ARXIV13073703