Potts models with invisible states on general Bethe lattices

被引:12
作者
Ananikian, N. [1 ,2 ]
Izmailyan, N. Sh [1 ,2 ]
Johnston, D. A. [3 ,4 ]
Kenna, R. [2 ]
Ranasinghe, R. P. K. C. M. [5 ]
机构
[1] AI Alikhanyan Natl Sci Lab, Yerevan 375036, Armenia
[2] Coventry Univ, Appl Math Res Ctr, Coventry CV1 5FB, W Midlands, England
[3] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[4] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[5] Univ Sri Jayewardenepura, Dept Math, Gangodawila, Sri Lanka
关键词
ONE ISING-MODEL; PHASE-DIAGRAMS; TRANSITION; TREES;
D O I
10.1088/1751-8113/46/38/385002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The number of so-called invisible states which need to be added to the q-state Potts model to transmute its phase transition from continuous to first order has attracted recent attention. In the q = 2 case, a Bragg-Williams (mean-field) approach necessitates four such invisible states while a 3-regular random graph formalism requires seventeen. In both of these cases, the changeover from second-to first-order behaviour induced by the invisible states is identified through the tricritical point of an equivalent Blume-Emery-Griffiths model. Here we investigate the generalized Potts model on a Bethe lattice with z neighbours. We show that, in the q = 2 case, r(c)(z) = 4z/3(z-1) (z-1/z-2)(z) invisible states are required to manifest the equivalent Blume-Emery-Griffiths tricriticality. When z = 3, the 3-regular random graph result is recovered, while z ->infinity delivers the Bragg-Williams (mean-field) result.
引用
收藏
页数:10
相关论文
共 28 条
[1]   Global Bethe lattice consideration of the spin-1 Ising model [J].
Akheyan, AZ ;
Ananikian, NS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (04) :721-731
[2]   PHASE-DIAGRAMS AND TRICRITICAL EFFECTS IN THE BEG MODEL [J].
ANANIKIAN, NS ;
AVAKIAN, AR ;
IZMAILIAN, NS .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1991, 172 (03) :391-404
[3]  
[Anonymous], 1935, Proc. R. Soc. A, DOI DOI 10.1098/RSPA.1935.0122
[4]   QUENCHED RANDOM GRAPHS [J].
BACHAS, C ;
DECALAN, C ;
PETROPOULOS, PMS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (18) :6121-6127
[5]   RENORMALIZATION-GROUP TREATMENT OF A POTTS LATTICE GAS FOR KRYPTON ADSORBED ONTO GRAPHITE [J].
BERKER, AN ;
OSTLUND, S ;
PUTNAM, FA .
PHYSICAL REVIEW B, 1978, 17 (09) :3650-3665
[6]   ISING MODEL FOR LAMBDA TRANSITION AND PHASE SEPARATION IN HE-3-HE-4 MIXTURES [J].
BLUME, M ;
EMERGY, VJ ;
GRIFFITHS, RB .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1971, 4 (03) :1071-+
[7]   STATISTICAL-MECHANICS OF A SPIN-ONE ISING-MODEL ON A BETHE LATTICE [J].
CHAKRABORTY, KG ;
TUCKER, JW .
PHYSICA A, 1986, 137 (1-2) :122-136
[8]   A SPIN-ONE ISING-MODEL ON THE BETHE LATTICE [J].
CHAKRABORTY, KG ;
MORITA, T .
PHYSICA A, 1985, 129 (02) :415-422
[9]   ON THE THEORY OF COOPERATIVE PHENOMENA IN CRYSTALS [J].
DOMB, C .
ADVANCES IN PHYSICS, 1960, 9 (34) :149-361
[10]   CAYLEY TREES, ISING PROBLEM, AND THERMODYNAMIC LIMIT [J].
EGGARTER, TP .
PHYSICAL REVIEW B, 1974, 9 (07) :2989-2992