Dual-pH Sensitive Charge-Reversal Drug Delivery System for Highly Precise and Penetrative Chemotherapy

被引:17
作者
Chen, Weiguo [1 ]
Li, Ji [1 ]
Xing, Yan [2 ]
Wang, Xiaowei [3 ]
Zhang, Hongyan [3 ]
Xia, Mingyu [2 ]
Wang, Dongkai [3 ]
机构
[1] Shenyang Pharmaceut Univ, Dept Tradit Chinese Med, 103 Wenhua Rd, Shenyang 110016, Peoples R China
[2] Shenyang Pharmaceut Univ, Dept Pharmacol, 103 Wenhua Rd, Shenyang 110016, Peoples R China
[3] Shenyang Pharmaceut Univ, Dept Pharmaceut, 103 Wenhua Rd, Shenyang 110016, Peoples R China
关键词
bioimaging; carbon dots; doxorubicin; folate; liposomes; pH-sensitive; NUCLEAR-LOCALIZATION SIGNAL; CARBON DOTS; THERAPEUTICS; PEPTIDE; FLUORESCENT; REDUCTION; RED;
D O I
10.1007/s11095-020-02852-6
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Purpose The complex physiological barriers impose extremely conflicting demands on systemic drug delivery, so both particle size and surface charge of the nanoplatforms become vital factors. As a carbon-based nanomaterial with excellent optical properties, carbon dots are not suitable for direct systemic transportin vivo, which limits their application in the field of biomedical imaging, especially in the areas of diagnosis and cancer treatment. Liposomes have been developed as universal nanocarriers for various drugs. In this study, we aimed to build a highly precise and penetrative drug delivery system (DDS) using carbon dots encapsulated by liposomes. Methods Carbon dots (CDs) were synthesized by the hydrothermal method using citric acid and ethylenediamine. Furthermore, simian virus 40 large T-antigen derived the nuclear targeting sequence (NLS) was bonded on the surface of CDs to obtain CDs-NLS. The antitumor drug doxorubicin was loaded onto the CDs-NLS through an acid-labile hydrazine bond to obtain DOX@CDs. Finally, DOX@CDs were encapsulated in aqueous centers of folate-coated and pH-sensitive liposomes, named pHSL-FA. Results In this paper, a nucleus-targeted nanocomposite (DOX@CDs), which bonds with the nuclear targeting sequence (NLS) and the anticancer drug doxorubicin (DOX), has physicochemical properties of particle size of about 3.8 nm, zeta potential of +31.8 mV and high quantum yield of 64.53%. The negatively charged folate-coated and pH-sensitive liposomes (pHSL-FA) are used as a carrier to reverse the surface charge of DOX@CDs. Compared to free DOX@CDs, pHSL-FA show higher tumor accumulation in 4 T1 tumor-bearing mice and further improve cytotoxicity to tumor cells. Conclusions This work proposes a unique nanomedical approach that enables the precise delivery of chemotherapy drugs and significantly reduces side effects, which is promising for clinical translation.
引用
收藏
页数:13
相关论文
共 41 条
[1]   Ligand-targeted therapeutics in anticancer therapy [J].
Allen, TM .
NATURE REVIEWS CANCER, 2002, 2 (10) :750-763
[2]   Luminescent Carbon Nanodots: Emergent Nanolights [J].
Baker, Sheila N. ;
Baker, Gary A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (38) :6726-6744
[3]   Nanopreparations for organelle-specific delivery in cancer [J].
Biswas, Swati ;
Torchilin, Vladimir P. .
ADVANCED DRUG DELIVERY REVIEWS, 2014, 66 :26-41
[4]   pH-Sensitive ZnO Quantum Dots-Doxorubicin Nanoparticles for Lung Cancer Targeted Drug Delivery [J].
Cai, Xiaoli ;
Luo, Yanan ;
Zhang, Weiying ;
Du, Dan ;
Lin, Yuehe .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (34) :22442-22450
[5]   Nanomedicine [J].
Caruso, Frank ;
Hyeon, Taeghwan ;
Rotello, Vincent M. .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (07) :2537-2538
[6]   Renal clearance of quantum dots [J].
Choi, Hak Soo ;
Liu, Wenhao ;
Misra, Preeti ;
Tanaka, Eiichi ;
Zimmer, John P. ;
Ipe, Binil Itty ;
Bawendi, Moungi G. ;
Frangioni, John V. .
NATURE BIOTECHNOLOGY, 2007, 25 (10) :1165-1170
[7]   To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery [J].
Danhier, Fabienne ;
Feron, Olivier ;
Preat, Veronique .
JOURNAL OF CONTROLLED RELEASE, 2010, 148 (02) :135-146
[8]   Tailor-Made Dual pH-Sensitive Polymer-Doxorubicin Nanoparticles for Efficient Anticancer Drug Delivery [J].
Du, Jin-Zhi ;
Du, Xiao-Jiao ;
Mao, Cheng-Qiong ;
Wang, Jun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (44) :17560-17563
[9]   Stimuli-Responsive Nano-Architecture Drug-Delivery Systems to Solid Tumor Micromilieu: Past, Present, and Future Perspectives [J].
El-Sawy, Hossam S. ;
Al-Abd, Ahmed M. ;
Ahmed, Tarek A. ;
El-Say, Khalid M. ;
Torchilin, Vladimir P. .
ACS NANO, 2018, 12 (11) :10636-10664
[10]   The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect [J].
Fang, Jun ;
Nakamura, Hideaki ;
Maeda, Hiroshi .
ADVANCED DRUG DELIVERY REVIEWS, 2011, 63 (03) :136-151