The smallest eigenvalue of Kr-free graphs

被引:16
作者
Nikiforov, V [1 ]
机构
[1] Memphis State Univ, Dept Math Sci, Memphis, TN 38152 USA
关键词
graph eigenvalues; smallest eigenvalue; second eigenvalue; clique number; independence number;
D O I
10.1016/j.disc.2006.01.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a Kr+1-free graph with n vertices and m edges, and let lambda(n)(G) be the smallest eigenvalue of its adjacency matrix. We show that lambda(n)(G) < - 2(r+1)m(r)/rn(2r-1). This implies also that if G is a d-regular graph of order n and independence number r, the second eigenvalue of G satisfies lambda(2)(G) >= -1 + 2/r (n-1-d)(r)/n(r-1). (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:612 / 616
页数:5
相关论文
共 6 条
[1]  
[Anonymous], 1998, GRAD TEXT M, DOI 10.1007/978-1-4612-0619-4_7
[2]   Graphs and Hermitian matrices:: eigenvalue interlacing [J].
Bollobás, B ;
Nikiforov, V .
DISCRETE MATHEMATICS, 2004, 289 (1-3) :119-127
[3]   QUASI-RANDOM GRAPHS [J].
CHUNG, FRK ;
GRAHAM, RL ;
WILSON, RM .
COMBINATORICA, 1989, 9 (04) :345-362
[4]  
Hoffman A. J., 1970, GRAPH THEORY ITS APP, P79, DOI DOI 10.1142/97898127969360041
[5]   Triangle factors in sparse pseudo-random graphs [J].
Krivelevich, M ;
Sudakov, B ;
Szabó, T .
COMBINATORICA, 2004, 24 (03) :403-426
[6]   Some inequalities for the largest eigenvalue of a graph [J].
Nikiforov, V .
COMBINATORICS PROBABILITY & COMPUTING, 2002, 11 (02) :179-189