Be careful on partial metric fixed point results

被引:109
作者
Haghi, R. H. [1 ]
Rezapour, Sh. [2 ]
Shahzad, N. [3 ]
机构
[1] Payame Noor Univ, Dept Math, Tehran, Iran
[2] Azarbaijan Univ Shahid Madani, Dept Math, Azarshahr, Tabriz, Iran
[3] King Abdulaziz Univ, Dept Math, Jeddah 21859, Saudi Arabia
关键词
0-Complete; Contractive maps; Fixed point; Partial metric space; CONTRACTION PRINCIPLE; MAPPINGS; THEOREMS; SPACES;
D O I
10.1016/j.topol.2012.11.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that fixed point generalizations to partial metric spaces can be obtained from the corresponding results in metric spaces. We consider some cases to demonstrate this fact. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:450 / 454
页数:5
相关论文
共 27 条
[11]   Common fixed points of generalized contractions on partial metric spaces and an application [J].
Ciric, Ljubomir ;
Samet, Bessem ;
Aydi, Hassen ;
Vetro, Calogero .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (06) :2398-2406
[12]   A Generalisation of Contraction Principle in Metric Spaces [J].
Dutta, P. N. ;
Choudhury, Binayak S. .
FIXED POINT THEORY AND APPLICATIONS, 2008, 2008 (1)
[13]   Some fixed point generalizations are not real generalizations [J].
Haghi, R. H. ;
Rezapour, Sh. ;
Shahzad, N. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (05) :1799-1803
[14]   Approximation of metric spaces by partial metric spaces [J].
Heckmann, R .
APPLIED CATEGORICAL STRUCTURES, 1999, 7 (1-2) :71-83
[15]  
Hitzler Pascal, 2011, Mathematical aspects of logic programming semantics, DOI DOI 10.1201/B10397
[16]   Some new extensions of Banach's contraction principle to partial metric space [J].
Ilic, Dejan ;
Pavlovic, Vladimir ;
Rakocevic, Vladimir .
APPLIED MATHEMATICS LETTERS, 2011, 24 (08) :1326-1330
[17]   CARISTIS FIXED-POINT THEOREM AND METRIC CONVEXITY [J].
KIRK, WA .
COLLOQUIUM MATHEMATICUM, 1976, 36 (01) :81-86
[18]  
Kopperman R., 2004, APPL GEN TOPOL, V5, P115, DOI [10.4995/agt.2004.2000, DOI 10.4995/AGT.2004.2000]
[19]  
Kopperman R. D., 2004, 19 SUMM C TOP ITS AP
[20]   Partial quasi-metrics [J].
Kuenzi, H. -P. A. ;
Pajoohesh, H. ;
Schellekens, M. P. .
THEORETICAL COMPUTER SCIENCE, 2006, 365 (03) :237-246