Be careful on partial metric fixed point results

被引:109
作者
Haghi, R. H. [1 ]
Rezapour, Sh. [2 ]
Shahzad, N. [3 ]
机构
[1] Payame Noor Univ, Dept Math, Tehran, Iran
[2] Azarbaijan Univ Shahid Madani, Dept Math, Azarshahr, Tabriz, Iran
[3] King Abdulaziz Univ, Dept Math, Jeddah 21859, Saudi Arabia
关键词
0-Complete; Contractive maps; Fixed point; Partial metric space; CONTRACTION PRINCIPLE; MAPPINGS; THEOREMS; SPACES;
D O I
10.1016/j.topol.2012.11.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that fixed point generalizations to partial metric spaces can be obtained from the corresponding results in metric spaces. We consider some cases to demonstrate this fact. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:450 / 454
页数:5
相关论文
共 27 条
[1]   Existence and uniqueness of a common fixed point on partial metric spaces [J].
Abdeljawad, T. ;
Karapinar, E. ;
Tas, K. .
APPLIED MATHEMATICS LETTERS, 2011, 24 (11) :1900-1904
[2]   A generalized contraction principle with control functions on partial metric spaces [J].
Abdeljawad, Thabet ;
Karapinar, Erdal ;
Tas, Kenan .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 63 (03) :716-719
[3]   Fixed points for generalized weakly contractive mappings in partial metric spaces [J].
Abdeljawad, Thabet .
MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (11-12) :2923-2927
[4]  
Akkouchi M, 2011, INT J NONLINEAR ANAL, V2, P73
[5]   Generalized contractions on partial metric spaces [J].
Altun, Ishak ;
Sola, Ferhan ;
Simsek, Hakan .
TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (18) :2778-2785
[6]  
[Anonymous], THEOR COMPUT SCI
[7]   A common fixed point theorem for compatible quasi contractive self mappings in metric spaces [J].
Berinde, Vasile .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 213 (02) :348-354
[8]   FIXED-POINT THEOREMS FOR MAPPINGS SATISFYING INWARDNESS CONDITIONS [J].
CARISTI, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 215 (JAN) :241-251
[9]   Fixed point theorems for generalized weakly contractive mappings [J].
Choudhury, Binayak S. ;
Konar, P. ;
Rhoades, B. E. ;
Metiya, N. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (06) :2116-2126
[10]   GENERALIZATION OF BANACHS CONTRACTION PRINCIPLE [J].
CIRIC, LB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 45 (02) :267-273