STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis

被引:879
作者
Willig, KI
Rizzoli, SO
Westphal, V
Jahn, R [1 ]
Hell, SW
机构
[1] Max Planck Inst Biophys Chem, Dept Neurobiol, D-37077 Gottingen, Germany
[2] Max Planck Inst Biophys Chem, Dept Nanobiophoton, D-37077 Gottingen, Germany
关键词
D O I
10.1038/nature04592
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Synaptic transmission is mediated by neurotransmitters that are stored in synaptic vesicles and released by exocytosis upon activation. The vesicle membrane is then retrieved by endocytosis, and synaptic vesicles are regenerated and re-filled with neurotransmitter(1). Although many aspects of vesicle recycling are understood, the fate of the vesicles after fusion is still unclear. Do their components diffuse on the plasma membrane, or do they remain together? This question has been difficult to answer because synaptic vesicles are too small (similar to 40 nm in diameter) and too densely packed to be resolved by available fluorescence microscopes. Here we use stimulated emission depletion (STED)(2) to reduce the focal spot area by about an order of magnitude below the diffraction limit, thereby resolving individual vesicles in the synapse. We show that synaptotagmin I, a protein resident in the vesicle membrane, remains clustered in isolated patches on the presynaptic membrane regardless of whether the nerve terminals are mildly active or intensely stimulated. This suggests that at least some vesicle constituents remain together during recycling. Our study also demonstrates that questions involving cellular structures with dimensions of a few tens of nanometres can be resolved with conventional far-field optics and visible light.
引用
收藏
页码:935 / 939
页数:5
相关论文
共 26 条
[1]   Single synaptic vesicles fusing transiently and successively without loss of identity [J].
Aravanis, AM ;
Pyle, JL ;
Tsien, RW .
NATURE, 2003, 423 (6940) :643-647
[2]   SYNAPTIC VESICLE MEMBRANE-PROTEINS INTERACT TO FORM A MULTIMERIC COMPLEX [J].
BENNETT, MK ;
CALAKOS, N ;
KREINER, T ;
SCHELLER, RH .
JOURNAL OF CELL BIOLOGY, 1992, 116 (03) :761-775
[3]   SYNAPTOTAGMIN - A CALCIUM SENSOR ON THE SYNAPTIC VESICLE SURFACE [J].
BROSE, N ;
PETRENKO, AG ;
SUDHOF, TC ;
JAHN, R .
SCIENCE, 1992, 256 (5059) :1021-1025
[4]   TURNOVER OF TRANSMITTER AND SYNAPTIC VESICLES AT FROG NEUROMUSCULAR JUNCTION [J].
CECCARELLI, B ;
HURLBUT, WP ;
MAURO, A .
JOURNAL OF CELL BIOLOGY, 1973, 57 (02) :499-524
[5]  
CHAPMAN ER, 1994, J BIOL CHEM, V269, P5735
[6]   Three modes of synaptic vesicular recycling revealed by single-vesicle imaging [J].
Gandhi, SP ;
Stevens, CF .
NATURE, 2003, 423 (6940) :607-613
[7]   VARIATION IN THE NUMBER, LOCATION AND SIZE OF SYNAPTIC VESICLES PROVIDES AN ANATOMICAL BASIS FOR THE NONUNIFORM PROBABILITY OF RELEASE AT HIPPOCAMPAL CA1 SYNAPSES [J].
HARRIS, KM ;
SULTAN, P .
NEUROPHARMACOLOGY, 1995, 34 (11) :1387-1395
[8]   Strategy for far-field optical imaging and writing without diffraction limit [J].
Hell, SW .
PHYSICS LETTERS A, 2004, 326 (1-2) :140-145
[9]   Toward fluorescence nanoscopy [J].
Hell, SW .
NATURE BIOTECHNOLOGY, 2003, 21 (11) :1347-1355
[10]   BREAKING THE DIFFRACTION RESOLUTION LIMIT BY STIMULATED-EMISSION - STIMULATED-EMISSION-DEPLETION FLUORESCENCE MICROSCOPY [J].
HELL, SW ;
WICHMANN, J .
OPTICS LETTERS, 1994, 19 (11) :780-782