Coupling one-shot learning and online discriminative learning for robust object tracking

被引:0
作者
Guan, Hao [1 ]
An, Zhiyong [2 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Software Engn, Beijing, Peoples R China
[2] Shandong Technol & Business Univ, Key Lab Intelligent Informat Proc Univ Shandong, Yantai, Peoples R China
关键词
Visual tracking; one-shot learning; online learning; deep learning; VISUAL TRACKING;
D O I
10.3233/JIFS-18577
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Visual tracking is a very challenging task in computer vision. In this paper, we present a general-purpose framework for robust tracking. We propose to couple one-shot learning and online discriminative learning together to address the fundamental stability-plasticity issue for tracking. A one-shot learner through offline training on large-scale datasets is used as a stable detector which does not suffer model drift while an online discriminative learner is adopted as the tracker which is adaptive to significant appearance changes. Based on the directive framework, we design a baseline tracking model to verify its effectiveness. In practice, a deep Siamese network trained offline plays as the one-shot learner which can re-detect the target in case of tracking drift and failure. A correlation classifier which incorporates a translation model and a scale model plays as the online learner. Through the coupling of the offline and online learning, the simple baseline tracker achieves a good balance between stability and adaptivity without time-consuming optimization. Experimental results on the large-scale benchmark dataset demonstrate the effectiveness of the proposed framework within which the designed baseline tracker outperforms many state-of-the-art methods both in precision and robustness.
引用
收藏
页码:819 / 828
页数:10
相关论文
共 30 条
  • [1] [Anonymous], 2014, P BRIT MACH VIS C, DOI DOI 10.5244/C.28.56
  • [2] Ensemble tracking
    Avidan, Shai
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (02) : 261 - 271
  • [3] Babenko B, 2009, PROC CVPR IEEE, P983, DOI 10.1109/CVPRW.2009.5206737
  • [4] Lucas-Kanade 20 years on: A unifying framework
    Baker, S
    Matthews, I
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 56 (03) : 221 - 255
  • [5] Representation Learning: A Review and New Perspectives
    Bengio, Yoshua
    Courville, Aaron
    Vincent, Pascal
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) : 1798 - 1828
  • [6] Fully-Convolutional Siamese Networks for Object Tracking
    Bertinetto, Luca
    Valmadre, Jack
    Henriques, Joao F.
    Vedaldi, Andrea
    Torr, Philip H. S.
    [J]. COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 : 850 - 865
  • [7] Bromley J., 1993, International Journal of Pattern Recognition and Artificial Intelligence, V7, P669, DOI 10.1142/S0218001493000339
  • [8] Danelljan M., 2014, Accurate Scale Estimation for Robust Visual Tracking, P1, DOI DOI 10.5244/C.28.65
  • [9] Adaptive Color Attributes for Real-Time Visual Tracking
    Danelljan, Martin
    Khan, Fahad Shahbaz
    Felsberg, Michael
    van de Weijer, Joost
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 1090 - 1097
  • [10] Grabner H, 2008, LECT NOTES COMPUT SC, V5302, P234, DOI 10.1007/978-3-540-88682-2_19