Variable sinh-Gaussian solitons in nonlocal nonlinear Schrodinger equation

被引:133
作者
Yang, Zhen-Jun [1 ]
Zhang, Shu-Min [1 ]
Li, Xing-Liang [1 ]
Pang, Zhao-Guang [1 ]
机构
[1] Hebei Normal Univ, Coll Phys & Informat Engn, Hebei Adv Thin Films Key Lab, Shijiazhuang 050024, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlocal nonlinear Schrodinger equation; Optical soliton; Nonlinear propagation; PROPAGATION; BEAMS; DARK;
D O I
10.1016/j.aml.2018.02.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the nonlocal nonlinear Schrodinger equation that governs phenomenologically the propagation of laser beams in nonlocal nonlinear media, we theoretically investigate the propagation of sinh-Gaussian beams (ShGBs). Mathematical expressions are derived to describe the beam propagation, the intensity distribution, the beam width, and the beam curvature radius of ShGBs. It is found that the propagation behavior of ShGBs is variable and closely related to the parameter of sinh function (PShF). If the PShF is small, the transverse pattern of ShGBs keeps invariant during propagation for a proper input power, which can be regarded as solitons. If the PShF is large, it varies periodically, which is similar to the evolution of temporal higher-order solitons in nonlinear optical fiber. Numerical simulations are carried out to illustrate the typical propagation characteristics. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:64 / 70
页数:7
相关论文
共 17 条
[1]  
Agrawal GP, 2013, 2013 OPTICAL FIBER COMMUNICATION CONFERENCE AND EXPOSITION AND THE NATIONAL FIBER OPTIC ENGINEERS CONFERENCE (OFC/NFOEC)
[2]   BEAM PROPAGATION AND THE ABCD RAY MATRICES [J].
BELANGER, PA .
OPTICS LETTERS, 1991, 16 (04) :196-198
[3]   Tripole-mode and quadrupole-mode solitons in (1+1)-dimensional nonlinear media with a spatial exponentialdecay nonlocality [J].
Dai, Zhiping ;
Yang, Zhenjun ;
Ling, Xiaohui ;
Zhang, Shumin ;
Pang, Zhaoguang ;
Li, Xingliang ;
Wang, Youwen .
SCIENTIFIC REPORTS, 2017, 7
[4]   Large phase shift of nonlocal optical spatial solitons [J].
Guo, Q ;
Luo, B ;
Yi, FH ;
Chi, S ;
Xie, YQ .
PHYSICAL REVIEW E, 2004, 69 (01) :8
[5]   Coherently coupled solitons, breathers and rogue waves for polarized optical waves in an isotropic medium [J].
Guo, Rui ;
Liu, Yue-Feng ;
Hao, Hui-Qin ;
Qi, Feng-Hua .
NONLINEAR DYNAMICS, 2015, 80 (03) :1221-1230
[6]   Ring dark and antidark solitons in nonlocal media [J].
Horikis, Theodoros P. ;
Frantzeskakis, Dimitrios J. .
OPTICS LETTERS, 2016, 41 (03) :583-586
[7]   Stable vortex soliton in nonlocal media with orientational nonlinearity [J].
Izdebskaya, Yana V. ;
Shvedov, Vladlen G. ;
Jung, Pawel S. ;
Krolikowski, Wieslaw .
OPTICS LETTERS, 2018, 43 (01) :66-69
[8]   Self-Induced Mode Transformation in Nonlocal Nonlinear Media [J].
Izdebskaya, Yana V. ;
Desyatnikov, Anton S. ;
Kivshar, Yuri S. .
PHYSICAL REVIEW LETTERS, 2013, 111 (12)
[9]   Dark soliton control in inhomogeneous optical fibers [J].
Liu, Wenjun ;
Huang, Longgang ;
Huang, Ping ;
Li, Yanqing ;
Lei, Ming .
APPLIED MATHEMATICS LETTERS, 2016, 61 :80-87
[10]   Self-induced fractional Fourier transform and revivable higher-order spatial solitons in strongly nonlocal nonlinear media [J].
Lu, Daquan ;
Hu, Wei ;
Zheng, Yajian ;
Liang, Yanbin ;
Cao, Longgui ;
Lan, Sheng ;
Guo, Qi .
PHYSICAL REVIEW A, 2008, 78 (04)