Performance analysis of light shelves in providing visual and thermal comfort and energy savings in residential buildings

被引:20
|
作者
Ebrahimi-Moghadam, Amir [1 ]
Ildarabadi, Paria [2 ]
Aliakbari, Karim [3 ]
Arabkoohsar, Ahmad [4 ]
Fadaee, Faramarz [2 ]
机构
[1] Islamic Azad Univ, Mashhad Branch, Young Researchers & Elite Club, Mashhad, Razavi Khorasan, Iran
[2] Khorasan Inst Higher Educ, Mashhad, Razavi Khorasan, Iran
[3] Tech & Vocat Univ TVU, Fac Montazeri, Dept Mech Engn, Khorasan Razavi Branch, Mashhad, Razavi Khorasan, Iran
[4] Aalborg Univ, Dept Energy Technol, Esbjerg, Denmark
关键词
Passive-enhancement method; Light shelf; Visual comfort; Thermal comfort; Energy consumption; DIFFERENT CLIMATE ZONES; DAYLIGHT ILLUMINANCE; OFFICE BUILDINGS; OPTIMIZATION; DESIGN; CONSUMPTION; LUMINANCE; SYSTEMS; IMPACT; MODEL;
D O I
10.1007/s40430-020-02565-2
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Using light shelves (LSs) is one of the passive-enhancement methods for energy saving and providing better thermal comfort conditions of the building users. The goal of this research is to create a consistent daylight environment that improves the visual and thermal comfort of users in buildings. Comfort effects on the four fronts of a building (in the Pars residential complex of Mashhad city in Iran as a case study) are investigated. Five types of LSs are suggested for improving the building's thermal and visual conditions. Then, the illuminance analysis is performed for the building with and without the LSs. Horizontal and vertical LSs are considered in building to enhance visual quality and uniformity of daylight in the building space. According to the highest and lowest light intensity in the investigated spaces, the LS that provides optimal visual conditions for space is selected. Then, the role of optimum LS in thermal comfort and energy indicators (heating, cooling, and electricity) has been investigated and compared with the base situation. Analyzing the results reveals that using the optimal LS causes an annual average improvement of 18%, 11%, and 7% in the demand for heating, cooling, and electricity, respectively, of the building throughout the year.
引用
收藏
页数:18
相关论文
共 50 条
  • [11] Office buildings with electrochromic windows: A sensitivity analysis of design parameters on energy performance, and thermal and visual comfort
    Dussault, Jean-Michel
    Gosselin, Louis
    ENERGY AND BUILDINGS, 2017, 153 : 50 - 62
  • [12] An intelligent lighting control system for individual visual comfort and energy savings in buildings
    Kar P.
    Kumar A.
    Shareef A.
    Harn K.T.
    Panda S.K.
    Journal of Reliable Intelligent Environments, 2023, 9 (04) : 385 - 398
  • [13] Investigation of temperature regulation effects on indoor thermal comfort, air quality, and energy savings toward green residential buildings
    Cao, Shi-Jie
    Deng, Hua-Yan
    SCIENCE AND TECHNOLOGY FOR THE BUILT ENVIRONMENT, 2019, 25 (03) : 309 - 321
  • [14] Energy Performance Analysis of Residential Buildings
    Oladokun, Michael
    Aigbavboa, Clinton
    ICCREM 2017: INDUSTRY REGULATION AND SUSTAINABLE DEVELOPMENT, 2017, : 48 - 58
  • [15] Redeveloping industrial buildings for residential use: Energy and thermal comfort aspects
    Valancius, Kestutis
    Motuziene, Violeta
    Paulauskaite, Sabina
    ENERGY FOR SUSTAINABLE DEVELOPMENT, 2015, 29 : 38 - 46
  • [16] Energy performance analysis of variable thermal resistance envelopes in residential buildings
    Park, Benjamin
    Srubar, Wil V., III
    Krarti, Moncef
    ENERGY AND BUILDINGS, 2015, 103 : 317 - 325
  • [17] Evaluation of Thermal Comfort and Cooling Performance of Residential Buildings in Arid Climates
    Al-Awainati, Nadya
    Fahkroo, Maryam Ibrahim
    Musharavati, Farayi
    Pokharel, Shaligram
    Gabbar, Hossam A.
    2013 IEEE INTERNATIONAL CONFERENCE ON SMART ENERGY GRID ENGINEERING (SEGE), 2013,
  • [18] Development of Assessing the Thermal Comfort and Energy Performance for Buildings
    Ji, Wenhui
    Yuan, Yanping
    ENERGIES, 2022, 15 (16)
  • [19] The nZEB Requirements for Residential Buildings: An Analysis of Thermal Comfort and Actual Energy Needs in Portuguese Climate
    Resende, Jaime
    Corvacho, Helena
    SUSTAINABILITY, 2021, 13 (15)
  • [20] Impact of urban temperatures on energy performance and thermal comfort in residential buildings. The case of Rome, Italy
    Zinzi, M.
    Carnielo, E.
    ENERGY AND BUILDINGS, 2017, 157 : 20 - 29