Highly sensitive stretchable transparent piezoelectric nanogenerators

被引:179
作者
Lee, Ju-Hyuck [1 ]
Lee, Keun Young [2 ]
Kumar, Brijesh [2 ]
Nguyen Thanh Tien [2 ]
Lee, Nae-Eung [1 ,2 ]
Kim, Sang-Woo [1 ,2 ]
机构
[1] Sungkyunkwan Univ SKKU, SKKU Samsung Graphene Ctr, SKKU Adv Inst Nanotechnol SAINT, Ctr Human Interface Nanotechnol HINT, Suwon 440746, South Korea
[2] Sungkyunkwan Univ SKKU, Sch Adv Mat Sci & Engn, Suwon 440746, South Korea
基金
新加坡国家研究基金会;
关键词
MECHANICAL ENERGY; GRAPHENE FILMS; NANOWIRE; PVDF;
D O I
10.1039/c2ee23530g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Here we report a new type of stretchable transparent piezoelectric nanogenerator (NG) using an organic piezoelectric material consisting of poly(vinylidene fluoride trifluoroethylene) [P(VDF-TrFE)] sandwiched with mobility-modified chemical vapor deposition-grown graphene electrodes by ferroelectric polarization into P(VDF-TrFE). This new type of NG has a very high sensitivity and mechanical durability with fully flexible, rollable, stretchable, foldable, and twistable properties. We also investigated the mobility-modified graphene electrodes with ferroelectric P(VDF-TrFE) remnant polarization, and a mechanism is proposed for switching the mobility of the carriers by the ferroelectric remnant polarization. Upon exposure to the same input sound pressure, the measured output performance of the stretchable NG with a thin polydimethylsiloxane stretchable rubber template is up to 30 times that of a normal NG with a plastic substrate. Upon exposure to an air flow at the same speed, the measured output voltage from the stretchable NG is about 8 times larger than that of the normal NG.
引用
收藏
页码:169 / 175
页数:7
相关论文
共 28 条
  • [1] Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
  • [2] Sound-Driven Piezoelectric Nanowire-Based Nanogenerators
    Cha, Seung Nam
    Seo, Ju-Seok
    Kim, Seong Min
    Kim, Hyun Jin
    Park, Young Jun
    Kim, Sang-Woo
    Kim, Jong Min
    [J]. ADVANCED MATERIALS, 2010, 22 (42) : 4726 - +
  • [3] Porous PVDF As Effective Sonic Wave Driven Nanogenerators
    Cha, SeungNam
    Kim, Seong Min
    Kim, HyunJin
    Ku, JiYeon
    Sohn, Jung Inn
    Park, Young Jun
    Song, Byong Gwon
    Jung, Myoung Hoon
    Lee, Eun Kyung
    Choi, Byoung Lyong
    Park, Jong Jin
    Wang, Zhong Lin
    Kim, Jong Min
    Kim, Kinam
    [J]. NANO LETTERS, 2011, 11 (12) : 5142 - 5147
  • [4] Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency
    Chang, Chieh
    Tran, Van H.
    Wang, Junbo
    Fuh, Yiin-Kuen
    Lin, Liwei
    [J]. NANO LETTERS, 2010, 10 (02) : 726 - 731
  • [5] 1.6 V Nanogenerator for Mechanical Energy Harvesting Using PZT Nanofibers
    Chen, Xi
    Xu, Shiyou
    Yao, Nan
    Shi, Yong
    [J]. NANO LETTERS, 2010, 10 (06) : 2133 - 2137
  • [6] Potential measurement from a single lead ziroconate titanate nanofiber using a nanomanipulator
    Chen, Xi
    Xu, Shiyou
    Yao, Nan
    Xu, Weihe
    Shi, Yong
    [J]. APPLIED PHYSICS LETTERS, 2009, 94 (25)
  • [7] Control of naturally coupled piezoelectric and photovoltaic properties for multi-type energy scavengers
    Choi, Dukhyun
    Lee, Keun Young
    Jin, Mi-Jin
    Ihn, Soo-Ghang
    Yun, Sungyoung
    Bulliard, Xavier
    Choi, Woong
    Lee, Sang Yoon
    Kim, Sang-Woo
    Choi, Jae-Young
    Kim, Jong Min
    Wang, Zhong Lin
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (11) : 4607 - 4613
  • [8] Mechanically Powered Transparent Flexible Charge-Generating Nanodevices with Piezoelectric ZnO Nanorods
    Choi, Min-Yeol
    Choi, Dukhyun
    Jin, Mi-Jin
    Kim, Insoo
    Kim, Song-Hyeob
    Choi, Joe-Young
    Lee, Song Yoon
    Kim, Jong Min
    Kim, Sang-Woo
    [J]. ADVANCED MATERIALS, 2009, 21 (21) : 2185 - +
  • [9] The rise of graphene
    Geim, A. K.
    Novoselov, K. S.
    [J]. NATURE MATERIALS, 2007, 6 (03) : 183 - 191
  • [10] Hybrid Nanogenerator for Concurrently Harvesting Biomechanical and Biochemical Energy
    Hansen, Benjamin J.
    Liu, Ying
    Yang, Rusen
    Wang, Zhong Lin
    [J]. ACS NANO, 2010, 4 (07) : 3647 - 3652