Invariant subspaces of nilpotent operators and LR-sequences

被引:4
作者
Li, WS [1 ]
Müller, V
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Acad Sci Czech Republ, Inst Math, CR-11567 Prague 1, Czech Republic
基金
美国国家科学基金会;
关键词
Primary 15A21; secondary 15A23; 47A15;
D O I
10.1007/BF01236472
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to study systematically invariant subspaces of finite-dimensional nilpotent operators. Our main motivation comes from classifying the similarity orbit in the lattice of invariant subspaces of a given nilpotent operator. We give a detailed study of the Littlewood-Richardson similarity orbit. We show that none of the "natural" similarity relations is equivalent with the others.
引用
收藏
页码:197 / 226
页数:30
相关论文
共 12 条
[1]  
[Anonymous], 1971, LONDON MATH SOC LECT
[2]  
Azenhas O., 1990, LIN MULTILIN ALGEBRA, V27, P229
[3]   THE INVARIANT SUBSPACES OF A UNIFORM JORDAN OPERATOR [J].
BERCOVICI, H ;
TANNENBAUM, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 156 (01) :220-230
[4]   THE QUASISIMILARITY ORBITS OF INVARIANT SUBSPACES [J].
BERCOVICI, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 95 (02) :344-363
[5]  
Gohberg I., 1986, INVARIANT SUBSPACES
[6]  
GOHBERG I, 1979, INTEGR EQUAT OPER TH, V2, P116
[7]  
Green J. A., 1961, SYMMETRIC FUNCTIONS
[8]  
KLEIN T, 1968, J LONDON MATH SOC, V43, P280
[9]  
MACDONALD IG, 1995, SYMMETRIC FUNCTIONS
[10]   THE LOCAL INVARIANT FACTORS OF A PRODUCT OF HOLOMORPHIC MATRIX FUNCTIONS - THE ORDER 4 CASE [J].
PHILIP, G ;
THIJSSE, A .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1993, 16 (02) :277-304