Mechanism of Inhibition of Ebola Virus RNA-Dependent RNA Polymerase by Remdesivir

被引:424
|
作者
Tchesnokov, Egor P. [1 ,2 ]
Feng, Joy Y. [3 ]
Porter, Danielle P. [3 ]
Gotte, Matthias [1 ,2 ]
机构
[1] Univ Alberta, Dept Med Microbiol & Immunol, Edmonton, AB T6G 2E1, Canada
[2] Univ Alberta, Li Ka Shing Inst Virol, Edmonton, AB T6G 2E1, Canada
[3] Gilead Sci Inc, 353 Lakeside Dr, Foster City, CA 94404 USA
来源
VIRUSES-BASEL | 2019年 / 11卷 / 04期
基金
加拿大健康研究院;
关键词
Ebola virus; respiratory syncytial virus; RNA polymerase; RdRp; remdesivir; GS-5734; delayed chain termination; SPECTRUM ANTIVIRAL ACTIVITY; T-705; FAVIPIRAVIR; NONHUMAN-PRIMATES; DRUG ENTECAVIR; IN-VITRO; EFFICACY; REPLICATION; GS-5734; MARBURG; TRIPHOSPHATES;
D O I
10.3390/v11040326
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Remdesivir (GS-5734) is a 1-cyano-substituted adenosine nucleotide analogue prodrug that shows broad-spectrum antiviral activity against several RNA viruses. This compound is currently under clinical development for the treatment of Ebola virus disease (EVD). While antiviral effects have been demonstrated in cell culture and in non-human primates, the mechanism of action of Ebola virus (EBOV) inhibition for remdesivir remains to be fully elucidated. The EBOV RNA-dependent RNA polymerase (RdRp) complex was recently expressed and purified, enabling biochemical studies with the relevant triphosphate (TP) form of remdesivir and its presumptive target. In this study, we confirmed that remdesivir-TP is able to compete for incorporation with adenosine triphosphate (ATP). Enzyme kinetics revealed that EBOV RdRp and respiratory syncytial virus (RSV) RdRp incorporate ATP and remdesivir-TP with similar efficiencies. The selectivity of ATP against remdesivir-TP is similar to 4 for EBOV RdRp and similar to 3 for RSV RdRp. In contrast, purified human mitochondrial RNA polymerase (h-mtRNAP) effectively discriminates against remdesivir-TP with a selectivity value of similar to 500-fold. For EBOV RdRp, the incorporated inhibitor at position i does not affect the ensuing nucleotide incorporation event at position i+1. For RSV RdRp, we measured a similar to 6-fold inhibition at position i+1 although RNA synthesis was not terminated. Chain termination was in both cases delayed and was seen predominantly at position i+5. This pattern is specific to remdesivir-TP and its 1-cyano modification. Compounds with modifications at the 2-position show different patterns of inhibition. While 2-C-methyl-ATP is not incorporated, ara-ATP acts as a non-obligate chain terminator and prevents nucleotide incorporation at position i+1. Taken together, our biochemical data indicate that the major contribution to EBOV RNA synthesis inhibition by remdesivir can be ascribed to delayed chain termination. The long distance of five residues between the incorporated nucleotide analogue and its inhibitory effect warrant further investigation.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Hepatitis E virus RNA-dependent RNA polymerase: RNA template specificities, recruitment and synthesis
    Mahilkar, Shakuntala
    Paingankar, Mandar S.
    Lole, Kavita S.
    JOURNAL OF GENERAL VIROLOGY, 2016, 97 : 2231 - 2242
  • [22] Remdesivir triphosphate can efficiently inhibit the RNA-dependent RNA polymerase from various flaviviruses
    Konkolova, Eva
    Dejmek, Milan
    Hrebabecky, Hubert
    Sala, Michal
    Boserle, Jiri
    Nencka, Radim
    Boura, Evzen
    ANTIVIRAL RESEARCH, 2020, 182
  • [23] Mutations in the SARS-CoV-2 RNA-dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms
    Stevens, Laura J.
    Pruijssers, Andrea J.
    Lee, Hery W.
    Gordon, Calvin J.
    Tchesnokov, Egor P.
    Gribble, Jennifer
    George, Amelia S.
    Hughes, Tia M.
    Lu, Xiaotao
    Li, Jiani
    Perry, Jason K.
    Porter, Danielle P.
    Cihlar, Tomas
    Sheahan, Timothy P.
    Baric, Ralph S.
    Gotte, Matthias
    Denison, Mark R.
    SCIENCE TRANSLATIONAL MEDICINE, 2022, 14 (656)
  • [24] Drug-Membrane Interactions: Effects of Virus-Specific RNA-Dependent RNA Polymerase Inhibitors Remdesivir and Favipiravir on the Structure of Lipid Bilayers
    Fischer, Markus
    Mueller, Peter
    Scheidt, Holger A.
    Luck, Meike
    BIOCHEMISTRY, 2022, 61 (13) : 1392 - 1403
  • [25] Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus
    Ago, H
    Adachi, T
    Yoshida, A
    Yamamoto, M
    Habuka, N
    Yatsunami, K
    Miyano, M
    STRUCTURE, 1999, 7 (11) : 1417 - 1426
  • [26] Mechanism of reaction of RNA-dependent RNA polymerase from SARS-CoV-2
    Aranda, Juan
    Wieczor, Milosz
    Terrazas, Montserrat
    Brun-Heath, Isabelle
    Orozco, Modesto
    CHEM CATALYSIS, 2022, 2 (05): : 1084 - 1099
  • [27] RNA-dependent RNA polymerase: Structure, mechanism, and drug discovery for COVID-19
    Jiang, Yi
    Yin, Wanchao
    Xu, H. Eric
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2021, 538 : 47 - 53
  • [28] Activation of protein kinase R by hepatitis C virus RNA-dependent RNA polymerase
    Suzuki, Ryosuke
    Matsuda, Mami
    Shimoike, Takashi
    Watashi, Koichi
    Aizaki, Hideki
    Kato, Takanobu
    Suzuki, Tetsuro
    Muramatsu, Masamichi
    Wakita, Takaji
    VIROLOGY, 2019, 529 : 226 - 233
  • [29] Potential RNA-dependent RNA polymerase (RdRp) inhibitors as prospective drug candidates for SARS-CoV-2
    Bekheit, Mohamed S.
    Panda, Siva S.
    Girgis, Adel S.
    EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2023, 252
  • [30] Allosteric inhibition of dengue virus RNA-dependent RNA polymerase by Litsea cubeba phytochemicals: a computational study
    Panday, Hrithika
    Jha, Saurabh Kumar
    Al-Shehri, Mohammed
    Panda, Siva Prasad
    Rana, Rashmi
    Alwathinani, Nada F.
    Azhar, Esam I.
    Dwivedi, Vivek Dhar
    Jha, Abhimanyu Kumar
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2024, 42 (10) : 5402 - 5414