Density Estimates for Solutions to One Dimensional Backward SDE's

被引:17
作者
Aboura, Omar [1 ]
Bourguin, Solesne [1 ,2 ]
机构
[1] Univ Paris 01, SAMM, EA 4543, F-75634 Paris, France
[2] UR Math, Fac Sci Technol & Commun, L-1359 Luxembourg, Luxembourg
关键词
Backward stochastic differential equations; Malliavin calculus; Density estimates;
D O I
10.1007/s11118-012-9287-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we derive sufficient conditions for each component of the solution to a general backward stochastic differential equation to have a density for which upper and lower Gaussian estimates can be obtained.
引用
收藏
页码:573 / 587
页数:15
相关论文
共 9 条
  • [1] Densities of one-dimensional backward SDEs
    Antonelli, F
    Kohatsu-Higa, A
    [J]. POTENTIAL ANALYSIS, 2005, 22 (03) : 263 - 287
  • [2] Karatzas Ioannis, 1991, Brownian Motion and Stochastic Calculus, V2nd
  • [3] Lamperti J., 1964, J FAC SCI U TOKYO IA, V32, P1
  • [4] Density formula and concentration inequalities with Malliavin calculus
    Nourdin, Ivan
    Viens, Frederi G.
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 : 2287 - 2309
  • [5] Nualart D., 2009, INFINITE DIMENSIONAL
  • [6] Gaussian density estimates for solutions to quasi-linear stochastic partial differential equations
    Nualart, David
    Quer-Sardanyons, Lluis
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (11) : 3914 - 3938
  • [7] Nualart David, 2006, The Malliavin Calculus and Related Topics, V1995
  • [8] PARDOUX E, 1992, LECT NOTES CONTR INF, V176, P200
  • [9] ADAPTED SOLUTION OF A BACKWARD STOCHASTIC DIFFERENTIAL-EQUATION
    PARDOUX, E
    PENG, SG
    [J]. SYSTEMS & CONTROL LETTERS, 1990, 14 (01) : 55 - 61