STONE DUALITY FOR SKEW BOOLEAN ALGEBRAS WITH INTERSECTIONS

被引:0
作者
Bauer, Andrej [1 ]
Cvetko-Vah, Karin [1 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
来源
HOUSTON JOURNAL OF MATHEMATICS | 2013年 / 39卷 / 01期
关键词
Stone spaces; duality; skew Boolean algebras; LATTICES; RINGS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend Stone duality between generalized Boolean algebras and Boolean spaces, which are the zero-dimensional locally-compact Hausdorff spaces, to a non-commutative setting. We first show that the category of right-handed skew Boolean algebras with intersections is dual to the category of surjective etale maps between Boolean spaces. We then extend the duality to skew Boolean algebras with intersections, and consider several variations in which the morphisms are restricted. Finally, we use the duality to construct a right-handed skew Boolean algebra without a lattice section.
引用
收藏
页码:73 / 109
页数:37
相关论文
共 50 条
[31]   A note on duality, Frobenius algebras and TQFTs [J].
Ionescu, LM .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2004, 13 (08) :999-1006
[32]   Duality for optimization problems in Banach algebras [J].
M. Soleimani-damaneh .
Journal of Global Optimization, 2012, 54 :375-388
[33]   Duality for optimization problems in Banach algebras [J].
Soleimani-damaneh, M. .
JOURNAL OF GLOBAL OPTIMIZATION, 2012, 54 (02) :375-388
[35]   A duality theorem for generalized Koszul algebras [J].
Martinez-Villa, Roberto ;
Saorin, Manuel .
JOURNAL OF ALGEBRA, 2007, 315 (01) :121-133
[36]   Duality of heights over quaternion algebras [J].
Liebendörfer, C ;
Rémond, G .
MONATSHEFTE FUR MATHEMATIK, 2005, 145 (01) :61-72
[37]   Duality for (skew-)polynomial codes and a variation of Construction A [J].
Oggier, Frederique .
RINGS, MODULES AND CODES, 2019, 727 :293-302
[38]   Generalizations of graded Clifford algebras and of complete intersections [J].
Cassidy, Thomas ;
Vancliff, Michaela .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2010, 81 :91-112
[39]   Finiteness conditions and distributive laws for Boolean algebras [J].
Erne, Marcel .
MATHEMATICAL LOGIC QUARTERLY, 2009, 55 (06) :572-586
[40]   A DUALIZING OBJECT APPROACH TO NONCOMMUTATIVE STONE DUALITY [J].
Kudryavtseva, Ganna .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 95 (03) :383-403