Blow-up criteria for fractional nonlinear Schrodinger equations

被引:16
|
作者
Van Duong Dinh [1 ,2 ]
机构
[1] Univ Toulouse, CNRS, UMR5219, Inst Math Toulouse, F-31062 Toulouse 9, France
[2] HCMC Univ Pedag, Dept Math, 280 An Duong Vuong, Ho Chi Minh, Vietnam
关键词
Fractional nonlinear Schrodinger equation; Local well-posedness; Virial estimates; Blow-up criteria; SCATTERING;
D O I
10.1016/j.nonrwa.2019.01.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the focusing fractional nonlinear Schrodinger equation i partial derivative(t)u-(-Delta)(s)u = -vertical bar u vertical bar(alpha)u, (t,x) is an element of R+ x R-d, where s is an element of (1/2,1) and alpha > 0. By using localized virial estimates, we establish general blow-up criteria for non-radial solutions to the equation. As consequences, we obtain blow-up criteria in both L-2-critical and L-2-supercritical cases which extend the results of Boulenger-Himmelsbach-Lenzmann (Boulenger et al., 2016) for non-radial initial data. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:117 / 140
页数:24
相关论文
共 50 条
  • [31] BLOW-UP FOR THE FOCUSING ENERGY CRITICAL NONLINEAR SCHRODINGER EQUATION WITH CONFINING HARMONIC POTENTIAL
    Cheng, Xing
    Gao, Yanfang
    COLLOQUIUM MATHEMATICUM, 2014, 134 (01) : 143 - 149
  • [32] Blow-up criteria for smooth solutions to the generalized 3D MHD equations
    Liping Hu
    Yinxia Wang
    Boundary Value Problems, 2013
  • [33] Refined blow-up criteria for the full compressible Navier–Stokes equations involving temperature
    Quansen Jiu
    Yanqing Wang
    Yulin Ye
    Journal of Evolution Equations, 2021, 21 : 1895 - 1916
  • [34] Blow-up criteria for smooth solutions to the generalized 3D MHD equations
    Hu, Liping
    Wang, Yinxia
    BOUNDARY VALUE PROBLEMS, 2013,
  • [35] Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrodinger equation
    Farah, Luiz G.
    JOURNAL OF EVOLUTION EQUATIONS, 2016, 16 (01) : 193 - 208
  • [36] A nonlinear fractional diffusion equation: Well-posedness, comparison results, and blow-up
    de Andrade, Bruno
    Siracusa, Giovana
    Viana, Arlucio
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (02)
  • [37] Blow-up criteria of the simplified Ericksen–Leslie system
    Zhengmao Chen
    Fan Wu
    Boundary Value Problems, 2023
  • [38] The 3D nematic liquid crystal equations with blow-up criteria in terms of pressure
    Liu, Qiao
    Wang, Pei
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 40 : 290 - 306
  • [39] NEW BLOW-UP CRITERIA FOR 3D CHEMOTAXIS-NAVIER-STOKES EQUATIONS
    Wang, Haoyu
    Qu, Yue
    Qian, Chenyin
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2022, 12 (01): : 361 - 377
  • [40] Refined blow-up criteria for the full compressible Navier-Stokes equations involving temperature
    Jiu, Quansen
    Wang, Yanqing
    Ye, Yulin
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (02) : 1895 - 1916