Blow-up criteria for fractional nonlinear Schrodinger equations

被引:16
|
作者
Van Duong Dinh [1 ,2 ]
机构
[1] Univ Toulouse, CNRS, UMR5219, Inst Math Toulouse, F-31062 Toulouse 9, France
[2] HCMC Univ Pedag, Dept Math, 280 An Duong Vuong, Ho Chi Minh, Vietnam
关键词
Fractional nonlinear Schrodinger equation; Local well-posedness; Virial estimates; Blow-up criteria; SCATTERING;
D O I
10.1016/j.nonrwa.2019.01.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the focusing fractional nonlinear Schrodinger equation i partial derivative(t)u-(-Delta)(s)u = -vertical bar u vertical bar(alpha)u, (t,x) is an element of R+ x R-d, where s is an element of (1/2,1) and alpha > 0. By using localized virial estimates, we establish general blow-up criteria for non-radial solutions to the equation. As consequences, we obtain blow-up criteria in both L-2-critical and L-2-supercritical cases which extend the results of Boulenger-Himmelsbach-Lenzmann (Boulenger et al., 2016) for non-radial initial data. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:117 / 140
页数:24
相关论文
共 50 条
  • [21] Blow-up criteria for the Navier-Stokes equations of compressible fluids
    Fan, Jishan
    Jiang, Song
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2008, 5 (01) : 167 - 185
  • [22] SMALL DATA BLOW-UP OF SOLUTIONS TO NONLINEAR SCHRODINGER EQUATIONS WITHOUT GAUGE INVARIANCE IN L2
    Ren, Yuanyuan
    Li, Yongsheng
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021,
  • [23] Blow-up of the solution of a nonlinear Schrodinger equation system with periodic boundary conditions
    Ivanauskas, Feliksas
    Puriuskis, Gintaras
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2013, 18 (01): : 53 - 65
  • [24] Sharp criteria of blow-up solutions for the cubic nonlinear beam equation
    Qing, Jun
    Zhang, Chuangyuan
    BOUNDARY VALUE PROBLEMS, 2019, 2019 (1)
  • [25] On blow up for the energy super critical defocusing nonlinear Schrodinger equations
    Merle, Frank
    Raphael, Pierre
    Rodnianski, Igor
    Szeftel, Jeremie
    INVENTIONES MATHEMATICAE, 2022, 227 (01) : 247 - 413
  • [26] Improved blow-up criteria for some Camassa-Holm type equations
    Zheng, Rudong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 415 : 182 - 201
  • [27] Blow-up criteria of smooth solutions to the 3D Boussinesq equations
    Qin, Yuming
    Yang, Xinguang
    Wang, Yu-Zhu
    Liu, Xin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (03) : 278 - 285
  • [28] Nonlinear parabolic stochastic evolution equations in critical spaces part II Blow-up criteria and instantaneous regularization
    Agresti, Antonio
    Veraar, Mark
    JOURNAL OF EVOLUTION EQUATIONS, 2022, 22 (02)
  • [29] Blow-up dynamics of L2-critical inhomogeneous nonlinear Schrodinger equation
    Peng, Congming
    Zhao, Dun
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (18) : 9408 - 9421
  • [30] On Blow-Up Solutions for the Fourth-Order Nonlinear Schrodinger Equation with Mixed Dispersions
    Niu, Huiling
    Youssouf, Abdoulaye Ali
    Feng, Binhua
    AXIOMS, 2024, 13 (03)