Blow-up criteria for fractional nonlinear Schrodinger equations

被引:16
|
作者
Van Duong Dinh [1 ,2 ]
机构
[1] Univ Toulouse, CNRS, UMR5219, Inst Math Toulouse, F-31062 Toulouse 9, France
[2] HCMC Univ Pedag, Dept Math, 280 An Duong Vuong, Ho Chi Minh, Vietnam
关键词
Fractional nonlinear Schrodinger equation; Local well-posedness; Virial estimates; Blow-up criteria; SCATTERING;
D O I
10.1016/j.nonrwa.2019.01.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the focusing fractional nonlinear Schrodinger equation i partial derivative(t)u-(-Delta)(s)u = -vertical bar u vertical bar(alpha)u, (t,x) is an element of R+ x R-d, where s is an element of (1/2,1) and alpha > 0. By using localized virial estimates, we establish general blow-up criteria for non-radial solutions to the equation. As consequences, we obtain blow-up criteria in both L-2-critical and L-2-supercritical cases which extend the results of Boulenger-Himmelsbach-Lenzmann (Boulenger et al., 2016) for non-radial initial data. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:117 / 140
页数:24
相关论文
共 50 条
  • [1] BLOW-UP CRITERIA FOR LINEARLY DAMPED NONLINEAR SCHRODINGER EQUATIONS
    Van Duong Dinh
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2021, 10 (03): : 599 - 617
  • [2] Blow-up criteria for the inhomogeneous nonlinear Schrodinger equation
    Yang, Han
    Zhu, Shihui
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [3] Dispersive blow-up for nonlinear Schrodinger equations revisited
    Bona, J. L.
    Ponce, G.
    Saut, J-C
    Sparber, C.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 102 (04): : 782 - 811
  • [4] ON BLOW-UP CRITERION FOR THE NONLINEAR SCHRODINGER EQUATION
    Du, Dapeng
    Wu, Yifei
    Zhang, Kaijun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (07) : 3639 - 3650
  • [5] On blow-up criteria for a class of nonlinear dispersive wave equations with dissipation
    Novruzov, Emil
    Yazar, Betul
    MONATSHEFTE FUR MATHEMATIK, 2019, 188 (01): : 163 - 181
  • [6] ON BLOW-UP SOLUTIONS TO THE FOCUSING MASS-CRITICAL NONLINEAR FRACTIONAL SCHRODINGER EQUATION
    Van Duong Dinh
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (02) : 689 - 708
  • [7] BLOW-UP CRITERIA AND INSTABILITY OF STANDING WAVES FOR THE INHOMOGENEOUS FRACTIONAL SCHRODINGER EQUATION
    Feng, Binhua
    He, Zhiqian
    Liu, Jiayin
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021,
  • [8] BLOW-UP CRITERIA AND INSTABILITY OF STANDING WAVES FOR THE FRACTIONAL SCHRODINGER POISSON EQUATION
    Mo, Yichun
    Zhu, Min
    Feng, Binhua
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 2023 (24)
  • [9] Blow-up results for systems of nonlinear Schrodinger equations with quadratic interaction
    Dinh, Van Duong
    Forcella, Luigi
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (05):
  • [10] Blow-up criteria for the 3D cubic nonlinear Schrodinger equation
    Holmer, Justin
    Platte, Rodrigo
    Roudenko, Svetlana
    NONLINEARITY, 2010, 23 (04) : 977 - 1030