How does surface integrity of nanostructured surfaces induced by severe plastic deformation influence fatigue behaviors of Al alloys with enhanced precipitation?

被引:25
作者
Maurel, Pierre [1 ,2 ,3 ]
Weiss, Laurent [1 ]
Grosdidier, Thierry [1 ,3 ]
Bocher, Philippe [2 ]
机构
[1] Univ Lorraine, UMR CNRS 7239, Lab LEM 3, 7 Rue Felix Savart, F-57073 Metz, France
[2] Ecole Technol Super, Lab Optimisat Precedes Fabricat Avances LOPFA, 1100 Rue Notre Dame Ouest, Montreal, PQ H3C 1K3, Canada
[3] LAB EXcellence Design Alloy Met Low mAss Struct L, 7 Rue Felix Savart, F-57073 Metz, France
关键词
Severe Plastic Deformation (SPD); Aluminium; High cycle fatigue; Surface Mechanical Attrition Treatment (SMAT); Precipitation aging; Duplex treatment; MECHANICAL ATTRITION TREATMENT; THERMAL-STABILITY; PROCESSING PARAMETERS; CORROSION-RESISTANCE; CRACK-PROPAGATION; GRAIN-REFINEMENT; STRENGTH; DUCTILITY; MICROSTRUCTURE; PRINCIPLES;
D O I
10.1016/j.ijfatigue.2020.105792
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Effects on fatigue behaviors and microstructures of Surface Mechanical Attrition Treatment (SMAT) before or after precipitation aging have been investigated on two hardenable Al alloys. The aluminum alloy with high notch sensitivity (7075) should not be processed by SMAT as the generated low surface integrity is always detrimental to fatigue performances. On less notch sensitive alloys (2024), SMAT before aging formed smaller and denser precipitates, resulting in a high hardened depth, and microstructures more resistant to residual stress relaxation than after conventional shot-peening. SMAT after aging resulted in a significant improvement of fatigue performance with only subsurface crack nucleation sites.
引用
收藏
页数:12
相关论文
共 40 条
[1]   Incorporating the principles of shot peening for a better understanding of surface mechanical attrition treatment (SMAT) by simulations and experiments [J].
Astaraee, Asghar Heydari ;
Miresmaeili, Reza ;
Bagherifard, Sara ;
Guagliano, Mario ;
Aliofkhazraei, Mahmood .
MATERIALS & DESIGN, 2017, 116 :365-373
[2]   Development of Surface Nano-Crystallization in Alloys by Surface Mechanical Attrition Treatment (SMAT) [J].
Azadmanjiri, Jalal ;
Berndt, Christopher C. ;
Kapoor, Ajay ;
Wen, Cuie .
CRITICAL REVIEWS IN SOLID STATE AND MATERIALS SCIENCES, 2015, 40 (03) :164-181
[3]   Review of shot peening processes to obtain nanocrystalline surfaces in metal alloys [J].
Bagherifard, S. ;
Guagliano, M. .
SURFACE ENGINEERING, 2009, 25 (01) :3-14
[4]   Reverse bending fatigue of shot peened 7075-T651 aluminium alloy: The role of residual stress relaxation [J].
Benedetti, M. ;
Fontanari, V. ;
Scardi, P. ;
Ricardo, C. L. A. ;
Bandini, M. .
INTERNATIONAL JOURNAL OF FATIGUE, 2009, 31 (8-9) :1225-1236
[5]   Thermal stability of nanocrystallized surface produced by surface mechanical attrition treatment in aluminum alloys [J].
Chang, H. -W. ;
Kelly, P. M. ;
Shi, Y. -N. ;
Zhang, M. -X. .
SURFACE & COATINGS TECHNOLOGY, 2012, 206 (19-20) :3970-3980
[6]   Microstructural evolution, strengthening and thermal stability of an ultrafine-grained Al-Cu-Mg alloy [J].
Chen, Ying ;
Gao, Nong ;
Sha, Gang ;
Ringer, Simon P. ;
Starink, Marco J. .
ACTA MATERIALIA, 2016, 109 :202-212
[7]   Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation [J].
Cheng, S. ;
Zhao, Y. H. ;
Zhu, Y. T. ;
Ma, E. .
ACTA MATERIALIA, 2007, 55 (17) :5822-5832
[8]   Analysis of the effects of controlled shot peening on fatigue damage of high strength aluminium alloys [J].
Curtis, S ;
de los Rios, ER ;
Rodopoulos, CA ;
Levers, A .
INTERNATIONAL JOURNAL OF FATIGUE, 2003, 25 (01) :59-66
[9]   Precipitation phenomena, thermal stability and grain growth kinetics in an ultra-fine grained Al 2014 alloy after annealing treatment [J].
Dhal, A. ;
Panigrahi, S. K. ;
Shunmugam, M. S. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 649 :229-238
[10]   A review on high-pressure torsion (HPT) from 1935 to 1988 [J].
Edalati, Kaveh ;
Horita, Zenji .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 652 :325-352