Integrable nonlocal asymptotic reductions of physically significant nonlinear equations

被引:40
作者
Ablowitz, Mark J. [1 ]
Musslimani, Ziad H. [2 ]
机构
[1] Univ Colorado, Dept Appl Math, Campus Box 526, Boulder, CO 80309 USA
[2] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
关键词
integrable systems; nonlinear waves; solitons and inverse scattering transform; nonlinear Schrodinger equation; INVERSE SCATTERING TRANSFORM; WAVES;
D O I
10.1088/1751-8121/ab0e95
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quasi-monochromatic complex reductions of a number of physically important equations arc obtained. Starting from the cubic nonlinear Klein-Gordon (NLKG), the Korteweg-de Vries (KdV) and water wave equations, it is shown that the leading order asymptotic approximation can be transformed to the well-known integrable AKNS system (Ablowitz et al 1974 Stud. Appl. Math. 53 249) associated with second order (in space) nonlinear wave equations. This in turn establishes, for the first time, an important physical connection between the recently discovered nonlocal integrable reductions of the AKNS system and physically interesting equations. Reductions include the paritytime, reverse space-time and reverse time nonlocal nonlinear Schrodinger equations.
引用
收藏
页数:8
相关论文
共 61 条
  • [21] BENNEY DJ, 1969, STUD APPL MATH, V48, P377
  • [22] Bour E., 1862, Journal de L' cole Imperiale Poly-technique, V22, P1
  • [23] CALOGERO F, 1982, SPECTRAL TRANSFORM S, V1
  • [24] Solutions of Nonlocal Equations Reduced from the AKNS Hierarchy
    Chen, Kui
    Deng, Xiao
    Lou, Senyue
    Zhang, Da-jun
    [J]. STUDIES IN APPLIED MATHEMATICS, 2018, 141 (01) : 113 - 141
  • [25] Christodoulides D, 2018, Parity-time symmetry and its applications, V280
  • [26] 3-DIMENSIONAL PACKETS OF SURFACE-WAVES
    DAVEY, A
    STEWARTSON, K
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1974, 338 (1613) : 101 - 110
  • [27] Collisional radiative model for the M1 transition spectrum of the highly-charged W54+ ions
    Ding, Xiaobin
    Yang, Jiaoxia
    Zhu, Linfan
    Koike, Fumihiro
    Murakami, Izumi
    Kato, Daiji
    Sakaue, Hiroyuki A.
    Nakamura, Nobuyuki
    Dong, Chenzhong
    [J]. PHYSICS LETTERS A, 2018, 382 (34) : 2321 - 2325
  • [28] Theory of coupled optical PT-symmetric structures
    El-Ganainy, R.
    Makris, K. G.
    Christodoulides, D. N.
    Musslimani, Ziad H.
    [J]. OPTICS LETTERS, 2007, 32 (17) : 2632 - 2634
  • [29] El-Ganainy R, 2018, NAT PHYS, V14, P11, DOI [10.1038/nphys4323, 10.1038/NPHYS4323]
  • [30] General soliton solution to a nonlocal nonlinear Schrodinger equation with zero and nonzero boundary conditions
    Feng, Bao-Feng
    Luo, Xu-Dan
    Ablowitz, Mark J.
    Musslimani, Ziad H.
    [J]. NONLINEARITY, 2018, 31 (12) : 5385 - 5409