Integrable nonlocal asymptotic reductions of physically significant nonlinear equations

被引:41
作者
Ablowitz, Mark J. [1 ]
Musslimani, Ziad H. [2 ]
机构
[1] Univ Colorado, Dept Appl Math, Campus Box 526, Boulder, CO 80309 USA
[2] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
关键词
integrable systems; nonlinear waves; solitons and inverse scattering transform; nonlinear Schrodinger equation; INVERSE SCATTERING TRANSFORM; WAVES;
D O I
10.1088/1751-8121/ab0e95
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quasi-monochromatic complex reductions of a number of physically important equations arc obtained. Starting from the cubic nonlinear Klein-Gordon (NLKG), the Korteweg-de Vries (KdV) and water wave equations, it is shown that the leading order asymptotic approximation can be transformed to the well-known integrable AKNS system (Ablowitz et al 1974 Stud. Appl. Math. 53 249) associated with second order (in space) nonlinear wave equations. This in turn establishes, for the first time, an important physical connection between the recently discovered nonlocal integrable reductions of the AKNS system and physically interesting equations. Reductions include the paritytime, reverse space-time and reverse time nonlocal nonlinear Schrodinger equations.
引用
收藏
页数:8
相关论文
共 61 条
[1]   INVERSE SCATTERING TRANSFORM FOR THE NONLOCAL REVERSE SPACE-TIME NONLINEAR SCHRODINGER EQUATION [J].
Ablowitz, M. J. ;
Feng, Bao-Feng ;
Luo, Xu-Dan ;
Musslimani, Z. H. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2018, 196 (03) :1241-1267
[2]  
Ablowitz M. J., 2011, Cambridge Texts in Applied Mathematics
[3]  
Ablowitz M.J., 2004, LONDON MATH SOC LECT
[4]   Reverse Space-Time Nonlocal Sine-Gordon/Sinh-Gordon Equations with Nonzero Boundary Conditions [J].
Ablowitz, Mark J. ;
Feng, Bao-Feng ;
Luo, Xu-Dan ;
Musslimani, Ziad H. .
STUDIES IN APPLIED MATHEMATICS, 2018, 141 (03) :267-307
[5]   Inverse scattering transform for the nonlocal nonlinear Schrodinger equation with nonzero boundary conditions [J].
Ablowitz, Mark J. ;
Luo, Xu-Dan ;
Musslimani, Ziad H. .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (01)
[6]   Integrable Nonlocal Nonlinear Equations [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
STUDIES IN APPLIED MATHEMATICS, 2017, 139 (01) :7-59
[7]   Inverse scattering transform for the integrable nonlocal nonlinear Schrodinger equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
NONLINEARITY, 2016, 29 (03) :915-946
[8]   Integrable Nonlocal Nonlinear Schrodinger Equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[9]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[10]  
Ablowitz MJ, 1991, Nonlinear Evolution Equations and Inverse Scattering