InterTARM: FP-tree based Framework for Mining Inter-transaction Association Rules from Stock Market Data

被引:1
作者
Chhinkaniwala, Hitesh
Thilagam, P. Santhi
机构
来源
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY | 2008年
关键词
D O I
10.1109/ICCSIT.2008.173
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mining association rules from transactions occurred at different time series is a difficult task because of high computational complexity, very large database size and multidimensional attributes. Traditional techniques, such as fundamental and technical analysis can provide investors with tools for predicting stock prices. However, these techniques cannot discover all the possible relations between stocks and thus there is a need for a different approach that will provide a deeper kind of analysis. We propose a framework called InterTARM on real datasets. Our approach employs effective preprocessing, pruning techniques and available condensed data structure to efficiently discover inter-transaction association rules.
引用
收藏
页码:513 / 517
页数:5
相关论文
共 10 条
[1]  
Agrawal R., 1993, SIGMOD Record, V22, P207, DOI 10.1145/170036.170072
[2]  
[Anonymous], P 3 ACM SIGMOD WORKS
[3]  
BERBERIDIS C, 2004, STAIRS 04
[4]  
HAN J, 2000, P 2000 ACM SIGMOD IN, P1, DOI DOI 10.1145/342009.335372
[5]  
*INT DAT SERV, 2008, NSE IND REAL TIM DAT
[6]  
Lühr S, 2005, PROCEEDINGS OF THE 2005 INTELLIGENT SENSORS, SENSOR NETWORKS & INFORMATION PROCESSING CONFERENCE, P343
[7]  
QIN L, 2005, ICIC 05
[8]  
Srikant R., 1996, SIGMOD Record, V25, P1, DOI 10.1145/235968.233311
[9]  
Tung A., 1999, P 5 ACM SIGKDD INT C, P297
[10]  
Venkatesh S., 2005, EXTENDED FREQUENT PA