Telecom-Wavelength Quantum Relay Using a Semiconductor Quantum Dot

被引:0
|
作者
Huwer, J. [1 ]
Felle, M. [1 ,2 ]
Stevenson, R. M. [1 ]
Skiba-Szymanska, J. [1 ]
Ward, M. B. [1 ]
Farrer, I. [3 ]
Penty, R. V. [1 ,2 ]
Ritchie, D. A. [3 ]
Shields, A. J. [1 ]
机构
[1] Toshiba Res Europe Ltd, 208 Sci Pk,Milton Rd, Cambridge CB4 0GZ, England
[2] Univ Cambridge, Dept Engn, Elect Div, 9 JJ Thomson Ave, Cambridge CB3 0FA, England
[3] Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England
关键词
TELEPORTATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
One promising technology expected to enable long-haul quantum communication networks with untrusted nodes are quantum relays. Their most practical implementation requires an entanglement source with operation at telecom wavelength and intrinsic single photon character. Here, we use a semiconductor quantum dot emitting in the O-band to demonstrate for the first time a system fulfilling both of these criteria. For implementation of a standard 4-state QKD-protocol with weak coherent input states, the system achieves mean fidelities above 88%. Further characterization of the relay with process tomography reveals teleportation for arbitrary input states. The results represent a significant advance in demonstrating feasibility of semiconductor light sources for the development of infrastructure-compatible quantum-communication technology for multi-node networks.
引用
收藏
页数:2
相关论文
共 50 条
  • [21] Optimized designs for telecom-wavelength quantum light sources based on hybrid circular Bragg gratings
    Rickert, Lucas
    Kupko, Timm
    Rodt, Sven
    Reitzenstein, Stephan
    Heindel, Tobias
    OPTICS EXPRESS, 2019, 27 (25) : 36824 - 36837
  • [22] Coherently driven semiconductor quantum dot at a telecommunication wavelength
    Takagi, Hiroyuki
    Nakaoka, Toshihiro
    Watanabe, Katsuyuki
    Kumagai, Naoto
    Arakawa, Yasuhiko
    OPTICS EXPRESS, 2008, 16 (18): : 13949 - 13954
  • [23] Wavelength Tuning In Quantum Dot Semiconductor Disc Lasers
    Butkus, M.
    Hamilton, C. J.
    Malcolm, G. P. A.
    Krestnikov, I.
    Livshits, D.
    Rafailov, E. U.
    22ND IEEE INTERNATIONAL SEMICONDUCTOR LASER CONFERENCE, 2010, : 79 - +
  • [24] Broadband visible-to-telecom wavelength germanium quantum dot photodetectors
    Siontas, Stylianos
    Wang, Haobei
    Li, Dongfang
    Zaslavsky, Alexander
    Pacifici, Domenico
    APPLIED PHYSICS LETTERS, 2018, 113 (18)
  • [25] Design for Telecom-Wavelength Quantum Emitters in Silicon Based on Alkali-Metal-Saturated Vacancy Complexes
    Udvarhelyi, Peter
    Narang, Prineha
    ACS NANO, 2025, 19 (05) : 5418 - 5428
  • [26] Solution-processed telecom-wavelength active optoelectronics: Monolithic integration of detectors and sources using colloidal quantum dots
    Sargent, Edward H.
    2006 IEEE LEOS ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 2006, : 416 - 417
  • [27] Visible and Telecom-Wavelength Single Quantum Dots in 1-D Photonic Bandgap Chiral Microcavities
    Lukishova, S. G.
    Bissell, L. J.
    Evans, C. M.
    Hahn, M.
    Choi, Y. J.
    Clarkson, C. J.
    Qian, X. F.
    Krauss, T. D.
    Stroud, C. R., Jr.
    Boyd, R. W.
    2008 CONFERENCE ON LASERS AND ELECTRO-OPTICS & QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE, VOLS 1-9, 2008, : 2944 - +
  • [28] Quantum dot resonant tunneling diodes for telecom wavelength single photon detection
    Li, H. W.
    Simmonds, P.
    Beere, H. E.
    Kardynal, B. E.
    Ritchie, D. A.
    Shields, A. J.
    OPTOELECTRONIC DEVICES: PHYSICS, FABRICATION, AND APPLICATION IV, 2007, 6766
  • [29] Interference with a quantum dot single-photon source and a laser at telecom wavelength
    Felle, M.
    Huwer, J.
    Stevenson, R. M.
    Skiba-Szymanska, J.
    Ward, M. B.
    Farrer, I.
    Penty, R. V.
    Ritchie, D. A.
    Shields, A. J.
    APPLIED PHYSICS LETTERS, 2015, 107 (13)
  • [30] Wavelength Conversion Efficiency of Quantum Dot Semiconductor Optical Amplifier
    Yang W.
    Wang H.
    Wang Z.
    Wei Z.
    Gong Q.
    Guangxue Xuebao/Acta Optica Sinica, 2017, 37 (04):