Qualitative properties of certain piecewise deterministic Markov processes

被引:86
作者
Benaim, Michel [1 ]
Le Borgne, Stephane [2 ]
Malrieu, Florent [3 ]
Zitt, Pierre-Andre [4 ]
机构
[1] Univ Neuchatel, Inst Math, CH-2000 Neuchatel, Switzerland
[2] Univ Rennes 1, CNRS, IRMAR, UMR 6625, F-35042 Rennes, France
[3] Univ Tours, Lab Math & Phys Theor UMR CNRS 7350, Federat Denis Poisson FR CNRS 2964, F-37200 Tours, France
[4] Univ Paris Est Marne La Vallee, CNRS, LAMA, UMR 8050, F-77454 Champs Sur Marne 2, Marne La Vallee, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2015年 / 51卷 / 03期
关键词
Piecewise deterministic Markov process; Convergence to equilibrium; Differential inclusion; Hormander bracket condition; ERGODICITY; SYSTEMS; STABILITY;
D O I
10.1214/14-AIHP619
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a class of piecewise deterministic Markov processes with state space R-d x E where E is a finite set. The continuous component evolves according to a smooth vector field that is switched at the jump times of the discrete coordinate. The jump rates may depend on the whole position of the process. Working under the general assumption that the process stays in a compact set, we detail a possible construction of the process and characterize its support, in terms of the solutions set of a differential inclusion. We establish results on the long time behaviour of the process, in relation to a certain set of accessible points, which is shown to be strongly linked to the support of invariant measures. Under Hormander-type bracket conditions, we prove that there exists a unique invariant measure and that the processes converges to equilibrium in total variation. Finally we give examples where the bracket condition does not hold, and where there may be one or many invariant measures, depending on the jump rates between the flows.
引用
收藏
页码:1040 / 1075
页数:36
相关论文
共 29 条
[1]  
[Anonymous], 1984, DIFFERENTIAL INCLUSI, DOI DOI 10.1007/978-3-642-69512-4
[2]   Invariant densities for dynamical systems with random switching [J].
Bakhtin, Yuri ;
Hurth, Tobias .
NONLINEARITY, 2012, 25 (10) :2937-2952
[3]   Stochastic approximations and differential inclusions [J].
Benaïm, M ;
Hofbauer, J ;
Sorin, S .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2005, 44 (01) :328-348
[4]   ON THE STABILITY OF PLANAR RANDOMLY SWITCHED SYSTEMS [J].
Benaim, Michel ;
Le Borgne, Stephane ;
Malrieu, Florent ;
Zitt, Pierre-Andre .
ANNALS OF APPLIED PROBABILITY, 2014, 24 (01) :292-311
[5]   Quantitative ergodicity for some switched dynamical systems [J].
Benaim, Michel ;
Le Borgne, Stephane ;
Malrieu, Florent ;
Zitt, Pierre-Andre .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2012, 17 :1-14
[6]  
Boxma O, 2005, PROBAB ENG INFORM SC, V19, P1
[7]   An exact stochastic hybrid model of excitable membranes including spatio-temporal evolution [J].
Buckwar, Evelyn ;
Riedler, Martin G. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2011, 63 (06) :1051-1093
[8]   Exponential ergodicity for Markov processes with random switching [J].
Cloez, Bertrand ;
Hairer, Martin .
BERNOULLI, 2015, 21 (01) :505-536
[9]   Stability and ergodicity of piecewise deterministic Markov processes [J].
Costa, O. L. V. ;
Dufour, F. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (02) :1053-1077
[10]  
Davis M. H. A., 1993, Monographs on Statistics and Applied Probability, V49